留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生态系统多功能性驱动因子及机制研究进展

李非凡 刘顺 许格希 陈淼 陈健 邢红爽 史作民

李非凡, 刘顺, 许格希, 陈淼, 陈健, 邢红爽, 史作民. 生态系统多功能性驱动因子及机制研究进展[J]. 陆地生态系统与保护学报, 2022, 2(2): 74-82. doi: 10.12356/j.2096-8884.2022-0011
引用本文: 李非凡, 刘顺, 许格希, 陈淼, 陈健, 邢红爽, 史作民. 生态系统多功能性驱动因子及机制研究进展[J]. 陆地生态系统与保护学报, 2022, 2(2): 74-82. doi: 10.12356/j.2096-8884.2022-0011
Feifan Li, Shun Liu, Gexi Xu, Miao Chen, Jian Chen, Hongshuang Xing, Zuomin Shi. Research Progress on Drivers and Mechanisms of Ecosystem Multifunctionality[J]. Terrestrial Ecosystem and Conservation, 2022, 2(2): 74-82. doi: 10.12356/j.2096-8884.2022-0011
Citation: Feifan Li, Shun Liu, Gexi Xu, Miao Chen, Jian Chen, Hongshuang Xing, Zuomin Shi. Research Progress on Drivers and Mechanisms of Ecosystem Multifunctionality[J]. Terrestrial Ecosystem and Conservation, 2022, 2(2): 74-82. doi: 10.12356/j.2096-8884.2022-0011

生态系统多功能性驱动因子及机制研究进展

doi: 10.12356/j.2096-8884.2022-0011
基金项目: 中央级公益性科研院所基本科研业务费专项资金资助项目(CAFYBB2021ZA002-2,CAFYBB2018ZA003);中国林科院森环森保所科研发展专项(99805-2020)
详细信息
    作者简介:

    李非凡:E-mail: 19139507805@163.com

    通讯作者:

    E-mail: shizm@caf.ac.cn

  • 中图分类号: Q148

Research Progress on Drivers and Mechanisms of Ecosystem Multifunctionality

  • 摘要: 近年来,生态系统多功能性(ecosystem multifunctionality)成为生态学研究的热点问题,开展生态系统多功能性与生物和非生物因子的研究有助于更深入地理解生态系统多功能性形成机制。通过回溯生态系统多功能性的研究历程,总结了3个不同维度水平的生物多样性,即物种多样性、功能多样性、系统发育多样性,尤其是植物功能多样性与生态系统多功能性的研究进展;分析了全球变化背景下,生态系统多功能性对土地利用变化、降水、氮沉降、温度升高的响应机制。最后提出了未来生态系统多功能性研究需重点关注的领域:1)生态系统多功能性的功能指标选择和计算方法;2)不同维度水平的生物多样性对生态系统多功能性的影响机制;3)生态系统多功能性对植物地上−地下功能多样性的响应;4)土壤微生物多样性对生态系统多功能性的影响;5)全球变化多因子及交互作用对生态系统多功能性的影响。为更深入认识生态系统多功能性及其维持机制、优化生态系统功能、保障其稳定性和可持续性提供科学参考。
  • 图  1  生物与非生物因子共同调控生态系统多功能性

    Figure  1.  Biotic and abiotic factors jointly regulate ecosystem multifunctionality

    图  2  不同维度水平的生物多样性对生态系统多功能性的影响(改自徐炜等,2016

    Figure  2.  Impacts of biodiversity at different dimension levels on ecosystem multifunctionality (Adopted from Xu et al., 2016)

    图  3  氮沉降对生态系统多功能性调控机制

    Figure  3.  Mechanisms of nitrogen deposition regulate the ecosystem multifunctionality

  • [1] 冯秋红, 史作民, 董莉莉, 2008. 植物功能性状对环境的响应及其应用[J]. 林业科学, 44(4): 125-131. doi:  10.11707/j.1001-7488.20080423
    [2] 付伟, 武慧, 赵爱花, 等, 2020. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 44(5): 475-493. doi:  10.17521/cjpe.2019.0163
    [3] 黄小波, 郎学东, 李帅锋, 等, 2021. 生态系统多功能性的指标选择与驱动因子: 研究现状与展望[J]. 生物多样性, 29(12): 1673-1686. doi:  10.17520/biods.2021111
    [4] 黄小波, 李帅锋, 苏建荣, 等, 2017. 云南松天然次生林物种丰富度与生态系统多功能性的关系[J]. 生物多样性, 25(11): 1182-1191. doi:  10.17520/biods.2017167
    [5] 井新, 贺金生, 2021. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望[J]. 植物生态学报, 45(10): 1094-1111. doi:  10.17521/cjpe.2020.0154
    [6] 李丽, 高俊琴, 雷光春, 等, 2011. 若尔盖不同地下水位泥炭湿地土壤有机碳和全氮分布规律[J]. 生态学杂志, 30(11): 2449-2455. doi:  10.13292/j.1000-4890.2011.0365
    [7] 马克平, 1993. 试论生物多样性的概念[J]. 生物多样性, 1(1): 20-22. doi:  10.17520/biods.1993005
    [8] 牛书丽, 陈卫楠, 2020. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 44(5): 449-460. doi:  10.17521/cjpe.2019.0355
    [9] 王凯, 王聪, 冯晓明, 等, 2022. 生物多样性与生态系统多功能性的关系研究进展[J]. 生态学报, 42(1): 11-23. doi:  10.5846/stxb202105141263
    [10] 王悦骅, 宋晓辉, 王占文, 等, 2018. 短花针茅荒漠草原植物地上地下生物量对载畜率和降水的响应[J]. 西北植物学报, 38(8): 1526-1533.
    [11] 王志恒, 刘玲莉, 2021. 生态系统结构与功能: 前沿与展望[J]. 植物生态学报, 45(10): 1033-1035. doi:  10.17521/cjpe.2021.0370
    [12] 徐炜, 马志远, 井新, 等, 2016. 生物多样性与生态系统多功能性: 进展与展望[J]. 生物多样性, 24(1): 55-71. doi:  10.17520/biods.2015091
    [13] Allan E, Manning P, Alt F, et al, 2015. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition[J]. Ecology Letters, 18(8): 834-843. doi:  10.1111/ele.12469
    [14] Bongers F J, Schmid B, Bruelheide H, et al, 2021. Functional diversity effects on productivity increase with age in a forest biodiversity experiment[J]. Nature Ecology & Evolution, 5(12): 1594-1603. doi:  10.1038/s41559-021-01564-3
    [15] Bradford M A, Wood S A, Bardgett R D, et al, 2014. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition[J]. Proceedings of the National Academy of Sciences, 111(40): 14478-14483. doi:  10.1073/pnas.1413707111
    [16] Byrnes J, Lefcheck J S, Gamfeldt L, et al, 2014a. Multifunctionality does not imply that all functions are positively correlated[J]. Proceedings of the National Academy of Sciences, 111(51): E5490. doi:  10.1073/pnas.1419515112
    [17] Byrnes J E K, Gamfeldt L, Isbell F, et al, 2014b. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions[J]. Methods in Ecology and Evolution, 5(2): 111-124. doi:  10.1111/2041-210X.12143
    [18] Cadotte M W, Dinnage R, Tilman D, 2012. Phylogenetic diversity promotes ecosystem stability[J]. Ecology, 93(sp8): S223-S233. doi:  10.1890/11-0426.1
    [19] Cadotte M W, Livingstone S W, Yasui S L E, et al, 2017. Explaining ecosystem multifunction with evolutionary models[J]. Ecology, 98(12): 3175-3187. doi:  10.1002/ecy.2045
    [20] Cardinale B J, Matulich K L, Hooper D U, et al, 2011. The functional role of producer diversity in ecosystems[J]. American Journal of Botany, 98(3): 572-592. doi:  10.3732/ajb.1000364
    [21] Chapin F S, Matson P A, Vitousek P M, 2011. Principles of terrestrial ecosystem ecology[M]. New York, NY: Springer.
    [22] Chillo V, Vázquez D P, Amoroso M M, et al, 2018. Land-use intensity indirectly affects ecosystem services mainly through plant functional identity in a temperate forest[J]. Functional Ecology, 32(5): 1390-1399. doi:  10.1111/1365-2435.13064
    [23] de Bello F, Lavorel S, Díaz S, et al, 2010. Towards an assessment of multiple ecosystem processes and services via functional traits[J]. Biodiversity and Conservation, 19(10): 2873-2893. doi:  10.1007/s10531-010-9850-9
    [24] Delgado-Baquerizo M, Eldridge D J, Ochoa V, et al, 2017b. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe[J]. Ecology Letters, 20(10): 1295-1305. doi:  10.1111/ele.12826
    [25] Delgado-Baquerizo M, Maestre F T, Reich P B, et al, 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications, 7(1): 10541. doi:  10.1038/ncomms10541
    [26] Delgado-Baquerizo M, Trivedi P, Trivedi C, et al, 2017a. Microbial richness and composition independently drive soil multifunctionality[J]. Functional Ecology, 31(12): 2330-2343. doi:  10.1111/1365-2435.12924
    [27] Díaz S, Lavorel S, de Bello F, et al, 2007. Incorporating plant functional diversity effects in ecosystem service assessments[J]. Proceedings of the National Academy of Sciences, 104(52): 20684-20689. doi:  10.1073/pnas.070471610
    [28] Eisenhauer N, Hines J, Isbell F, et al, 2018. Plant diversity maintains multiple soil functions in future environments[J]. eLife, 7: e41228. doi:  10.7554/eLife.41228
    [29] Flynn D F B, Mirotchnick N, Jain M, et al, 2011. Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships[J]. Ecology, 92(8): 1573-1581. doi:  10.1890/10-1245.1
    [30] Fry E L, Savage J, Hall A L, et al, 2018. Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland[J]. Ecology, 99(10): 2260-2271. doi:  10.1002/ecy.2437
    [31] Garland G, Banerjee S, Edlinger A, et al, 2021. A closer look at the functions behind ecosystem multifunctionality: a review[J]. Journal of Ecology, 109(2): 600-613. doi:  10.1111/1365-2745.13511
    [32] Garnier E, Cortez J, Billès G, et al, 2004. Plant functional markers capture ecosystem properties during secondary succession[J]. Ecology, 85(9): 2630-2637. doi:  10.1890/03-0799
    [33] Grime J P, 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects[J]. Journal of Ecology, 86(6): 902-910. doi:  10.1046/j.1365-2745.1998.00306.x
    [34] Gross N, Bagousse-Pinguet Y L, Liancourt P, et al, 2017. Functional trait diversity maximizes ecosystem multifunctionality[J]. Nature Ecology & Evolution, 1(5): 0132. doi:  10.1038/s41559-017-0132
    [35] Hector A, Bagchi R, 2007. Biodiversity and ecosystem multifunctionality[J]. Nature, 448: 188-190. doi:  10.1038/nature05947
    [36] Hector A, Schmid B, Beierkuhnlein C, et al, 1999. Plant diversity and productivity experiments in European grasslands[J]. Science, 286(5442): 1123-1127. doi:  10.1126/science.286.5442.112
    [37] Huang X B, Su J R, Li S F, et al, 2019. Functional diversity drives ecosystem multifunctionality in a Pinus yunnanensis natural secondary forest[J]. Scientific Reports, 9(1): 6979. doi:  10.1038/s41598-019-43475-1
    [38] Jing X, Sanders N J, Shi Y, et al, 2015. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate[J]. Nature Communications, 6: 8159. doi:  10.1038/ncomms9159
    [39] Le Bagousse-Pinguet Y, Soliveres S, Gross N, et al, 2019. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences, 116(17): 8419-8424. doi:  10.1073/pnas.1815727116
    [40] Li J, Li S F, Huang X B, et al, 2022. Plant diversity and soil properties regulate the microbial community of monsoon evergreen broad-leaved forest under different intensities of woodland use[J]. Science of the Total Environment, 821: 153565. doi:  10.1016/j.scitotenv.2022.153565
    [41] Li J, Zheng Z, Xie H, et al, 2017. Heterogeneous microcommunities and ecosystem multifunctionality in seminatural grasslands under three management modes[J]. Ecology and Evolution, 7(1): 14-25. doi:  10.1002/ece3.2604
    [42] Liu X C, Shi X M, Zhang S T, 2021. Soil abiotic properties and plant functional diversity co-regulate the impacts of nitrogen addition on ecosystem multifunctionality in an alpine meadow[J]. Science of the Total Environment, 780: 146476. doi:  10.1016/j.scitotenv.2021.146476
    [43] Liu X C, Zhang S T, 2019. Nitrogen addition shapes soil enzyme activity patterns by changing pH rather than the composition of the plant and microbial communities in an alpine meadow soil[J]. Plant and Soil, 440(1): 11-24. doi:  10.1007/s11104-019-04054-5
    [44] Liu Y R, Delgado-Baquerizo M, Trivedi P, et al, 2017. Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change[J]. Soil Biology and Biochemistry, 107: 208-217. doi:  10.1016/j.soilbio.2016.12.003
    [45] Luo Y H, Cadotte M W, Burgess K S, et al, 2019. Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function[J]. Ecology Letters, 22(9): 1449-1461. doi:  10.1111/ele.13330
    [46] Maestre F T, Quero J L, Gotelli N J, et al, 2012. Plant species richness and ecosystem multifunctionality in global drylands[J]. Science, 335(6065): 214-218. doi:  10.1126/science.1215442
    [47] Manning P, van der Plas F, Soliveres S, et al, 2018. Redefining ecosystem multifunctionality[J]. Nature Ecology & Evolution, 2(3): 427-436. doi:  10.1038/s41559-017-0461-7
    [48] Mason N W H, Mouillot D, Lee W G, et al, 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity[J]. Oikos, 111(1): 112-118. doi:  10.1111/j.0030-1299.2005.13886.x
    [49] Mazel F, Pennell M W, Cadotte M W, et al, 2018. Prioritizing phylogenetic diversity captures functional diversity unreliably[J]. Nature Communications, 9(1): 2888. doi:  10.1038/s41467-018-05126-3
    [50] Naeem S, Knops J M H, Tilman D, et al, 2000. Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors[J]. Oikos, 91(1): 97-108. doi:  10.1034/j.1600-0706.2000.910108.x
    [51] Naeem S, Thompson L J, Lawler S P, et al, 1994. Declining biodiversity can alter the performance of ecosystems[J]. Nature, 368(6473): 734-737. doi:  10.1038/368734a0
    [52] Odum E P, Barrett G W, 1971. Fundamentals of ecology[M]. Philadelphia: Saunders College Publishing.
    [53] Peco B, Navarro E, Carmona C P, et al, 2017. Effects of grazing abandonment on soil multifunctionality: the role of plant functional traits[J]. Agriculture, Ecosystems & Environment, 249: 215-225. doi:  10.1016/j.agee.2017.08.013
    [54] Perkins D M, Bailey R A, Dossena M, et al, 2015. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes[J]. Global Change Biology, 21(1): 396-406. doi:  10.1111/gcb.12688
    [55] Peter H, Beier S, Bertilsson S, et al, 2011. Function-specific response to depletion of microbial diversity[J]. The ISME Journal, 5(2): 351-361. doi:  10.1038/ismej.2010.119
    [56] Reich P B, Knops J, Tilman D, et al, 2001. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition[J]. Nature, 410(6830): 809-810. doi:  10.1038/35071062
    [57] Reich P B, Tilman D, Isbell F, et al, 2012. Impacts of biodiversity loss escalate through time as redundancy fades[J]. Science, 336(6081): 589-592. doi:  10.1126/science.1217909
    [58] Roger F, Bertilsson S, Langenheder S, et al, 2016. Effects of multiple dimensions of bacterial diversity on functioning, stability and multifunctionality[J]. Ecology, 97(10): 2716-2728. doi:  10.1002/ecy.1518
    [59] Romillac N, Santorufo L, 2021. Transferring concepts from plant to microbial ecology: a framework proposal to identify relevant bacterial functional traits[J]. Soil Biology and Biochemistry, 162: 108415. doi:  10.1016/j.soilbio.2021.108415
    [60] Ruiz-Benito P, Ratcliffe S, Jump A S, et al, 2017. Functional diversity underlies demographic responses to environmental variation in European forests[J]. Global Ecology and Biogeography, 26(2): 128-141. doi:  10.1111/geb.12515
    [61] Sala O E, Chapin F S Ⅲ, Armesto J J, et al, 2000. Global biodiversity scenarios for the year 2100[J]. Science, 287(5459): 1770-1774. doi:  10.1126/science.287.5459.177
    [62] Sanderson M A, Skinner R H, Barker D J, et al, 2004. Plant species diversity and management of temperate forage and grazing land ecosystems[J]. Crop Science, 44(4): 1132-1144. doi:  10.2135/cropsci2004.1132
    [63] Srivastava D S, Cadotte M W, Macdonald A A M, et al,, 2012. Phylogenetic diversity and the functioning of ecosystems[J]. Ecology Letters, 15(7): 637-648. doi:  10.1111/j.1461-0248.2012.01795.x
    [64] Steinauer K, Chatzinotas A, Eisenhauer N, 2016. Root exudate cocktails: the link between plant diversity and soil microorganisms[J]. Ecology and Evolution, 6(20): 7387-7396. doi:  10.1002/ece3.2454
    [65] Steudel B, Hallmann C, Lorenz M, et al, 2016. Contrasting biodiversity-ecosystem functioning relationships in phylogenetic and functional diversity[J]. New Phytologist, 212(2): 409-420. doi:  10.1111/nph.14054
    [66] Tilman D, Downing J A, 1994. Biodiversity and stability in grasslands[J]. Nature, 367(6461): 363-365. doi:  10.1038/367363a0
    [67] Tilman D, Lehman C L, Thomson K T, 1997. Plant diversity and ecosystem productivity: theoretical considerations[J]. Proceedings of the National Academy of Sciences, 94(5): 1857-1861. doi:  10.1073/pnas.94.5.1857
    [68] Tilman D, Reich P B, Knops J, et al, 2001. Diversity and productivity in a long-term grassland experiment[J]. Science, 294(5543): 843-845. doi:  10.1126/science.1060391
    [69] Tilman D, Wedin D, Knops J, 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems[J]. Nature, 379(6567): 718-720. doi:  10.1038/379718a0
    [70] Valencia E, Gross N, Quero J L, et al, 2018. Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality[J]. Global Change Biology, 24(12): 5642-5654. doi:  10.1111/gcb.14440
    [71] Valencia E, Maestre F T, Le Bagousse-Pinguet Y, et al, 2015. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands[J]. New Phytologist, 206(2): 660-671. doi:  10.1111/nph.13268
    [72] van der Heijden M G A, Bardgett R D, van Straalen N M, 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 11(3): 296-310. doi:  10.1111/j.1461-0248.2007.01139.x
    [73] van der Heijden M G A, Klironomos J N, Ursic M, et al, 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity[J]. Nature, 396(6706): 69-72. doi:  10.1038/23932
    [74] van der Plas F, 2019. Biodiversity and ecosystem functioning in naturally assembled communities[J]. Biological Reviews, 94(4): 1220-1245. doi:  10.1111/brv.12499
    [75] Wagg C, Bender S F, Widmer F, et al, 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences, 111(14): 5266-5270. doi:  10.1073/pnas.1320054111
    [76] Wardle D A, Bardgett R D, Klironomos J N, et al, 2004. Ecological linkages between aboveground and belowground biota[J]. Science, 304(5677): 1629-1633. doi:  10.1126/science.1094875
    [77] Wei C Z, Yu Q, Bai E, et al, 2013. Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems[J]. Global Change Biology, 19(12): 3688-3697. doi:  10.1111/gcb.12348
    [78] Wen Z, Zheng H, Zhao H, et al, 2020. Land-use intensity indirectly affects soil multifunctionality via a cascade effect of plant diversity on soil bacterial diversity[J]. Global Ecology and Conservation, 23: e01061. doi:  10.1016/j.gecco.2020.e01061
    [79] Xu Y J, Zhang Y, Yang J, et al, 2020. Influence of tree functional diversity and stand environment on fine root biomass and necromass in four types of evergreen broad-leaved forests[J]. Global Ecology and Conservation, 21: e00832. doi:  10.1016/j.gecco.2019.e00832
    [80] Xu Z W, Li M H, Zimmermann N E, et al, 2018. Plant functional diversity modulates global environmental change effects on grassland productivity[J]. Journal of Ecology, 106(5): 1941-1951. doi:  10.1111/1365-2745.12951
    [81] Yan Y Z, Zhang Q, Buyantuev A, et al, 2020. Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality[J]. Science of the Total Environment, 726: 138529. doi:  10.1016/j.scitotenv.2020.138529
    [82] Yang H J, Li Y, Wu M Y, et al, 2011. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits[J]. Global Change Biology, 17(9): 2936-2944. doi:  10.1111/j.1365-2486.2011.02423.x
    [83] Yang Y F, 2021. Emerging patterns of microbial functional traits[J]. Trends in Microbiology, 29(10): 874-882. doi:  10.1016/j.tim.2021.04.004
  • 加载中
图(3)
计量
  • 文章访问数:  2089
  • HTML全文浏览量:  641
  • PDF下载量:  336
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 网络出版日期:  2022-06-08
  • 刊出日期:  2022-07-19

目录

    /

    返回文章
    返回

    关于网站迁移的通知

     尊敬的各位专家、读者:

    本刊网站将于6月28日起迁移至中国林业科学研究院期刊网(https://journals.caf.ac.cn/ldstxtybhxb/),届时旧网址http://www.ldstxtybhxb.com/将停止访问,如需投稿请直接登录http://edit.caf.ac.cn/ldstxtybhxb。由此给您带来不便,敬请谅解!

    如有任何问题,请及时联系编辑部,Tel:010-62889503;E-mail:ldstxtybh@caf.ac.cn。

     

    陆地生态系统与保护学报

    2024-06-25