留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湖北秭归柑橘园土壤养分特征和肥力评价

陈会玲 胡建文 勾蒙蒙 王娜 朱粟锋 肖文发 刘常富

陈会玲, 胡建文, 勾蒙蒙, 王娜, 朱粟锋, 肖文发, 刘常富. 湖北秭归柑橘园土壤养分特征和肥力评价[J]. 陆地生态系统与保护学报, 2022, 2(4): 21-31. doi: 10.12356/j.2096-8884.2022-0057
引用本文: 陈会玲, 胡建文, 勾蒙蒙, 王娜, 朱粟锋, 肖文发, 刘常富. 湖北秭归柑橘园土壤养分特征和肥力评价[J]. 陆地生态系统与保护学报, 2022, 2(4): 21-31. doi: 10.12356/j.2096-8884.2022-0057
Huiling Chen, Jianwen Hu, Mengmeng Gou, Na Wang, Sufeng Zhu, Wenfa Xiao, Changfu Liu. Nutrient Characteristics and Fertility Evaluation of Citrus Orchard Soil in Zigui, Hubei Province[J]. Terrestrial Ecosystem and Conservation, 2022, 2(4): 21-31. doi: 10.12356/j.2096-8884.2022-0057
Citation: Huiling Chen, Jianwen Hu, Mengmeng Gou, Na Wang, Sufeng Zhu, Wenfa Xiao, Changfu Liu. Nutrient Characteristics and Fertility Evaluation of Citrus Orchard Soil in Zigui, Hubei Province[J]. Terrestrial Ecosystem and Conservation, 2022, 2(4): 21-31. doi: 10.12356/j.2096-8884.2022-0057

湖北秭归柑橘园土壤养分特征和肥力评价

doi: 10.12356/j.2096-8884.2022-0057
基金项目: 国家自然科学基金项目(32172671);国家自然科学基金重点项目(32130074)
详细信息
    作者简介:

    陈会玲:E-mail: chenhuiling010@163.com

    通讯作者:

    E-mail: liucf898@163.com

  • 中图分类号: S714.5

Nutrient Characteristics and Fertility Evaluation of Citrus Orchard Soil in Zigui, Hubei Province

  • 摘要:   目的  研究湖北省秭归县柑橘园土壤的养分特征和肥力状况,为柑橘园土壤肥力精准管理和可持续经营提供科学依据。  方法  选取pH值、土壤有机质、全氮、碱解氮、全磷、有效磷、全钾和速效钾含量8个指标,依据土壤普查分级标准,并结合内梅罗综合指数法,对土壤养分及肥力进行评价。  结果  研究区柑橘园土壤pH值总体呈弱酸性。不同土壤类型中,有机质含量随着土层加深而降低。研究区域内有机质含量低于20 g·kg−1的分布频率超过50%,土壤有机质呈缺乏状态。随土层深度增加,全氮、全磷、有效磷和速效钾含量降低,表土层的全氮、全磷、碱解氮和速效钾含量与其他土层有显著差异(P<0.05)。同一土壤类型中,土壤综合肥力在不同土层间有显著性差异(P<0.05)。不同土壤类型的综合肥力表现为黄壤>水稻土>石灰土>紫色土,肥力指数均介于0.90~1.80之间,属于“中等”肥力。  结论  秭归县柑橘园各土壤类型中的养分均表现为有机质和碱解氮缺乏,肥力均属“中等”水平,今后在柑橘园的管理中,需根据其养分缺乏程度,合理增施含氮元素的有机肥,以便改良土壤、提升土壤肥力。
  • 图  1  采样点分布情况

    Figure  1.  Distribution of sampling sites

    图  2  不同土壤类型的pH值和SOM含量分布特征(n = 57)

    注:不同土壤类型间差异显著性用不同大写字母表征(P<0.05) ;同一土壤类型不同土层间差异显著性用不同小写字母表征(P<0.05),下同。Different capital letters indicate significant differences among different soil types (P<0.05); Different lowercase letters indicate significant difference between different soil layers of the same soil type (P<0.05), the same below.

    Figure  2.  Distribution characteristics of pH-value and SOM content in different soil types (n = 57)

    图  3  不同土壤类型的全量养分分布特征(n = 57)

    Figure  3.  Distribution characteristics of total nutrients in different soil types (n = 57)

    图  4  不同土壤类型速效养分分布特征(n = 57)

    Figure  4.  Distribution characteristics of available nutrients in different soil types (n = 57)

    图  5  不同土壤类型综合肥力指数分布特征(n = 57)

    Figure  5.  Distribution characteristics of comprehensive fertility index in different soil types (n = 57)

    表  1  土壤养分含量分级标准

    Table  1.   Classification standard of soil nutrient content

    有机质SOM/
    (g·kg−1)
    全氮TN/
    (g·kg−1)
    全磷TP/
    (g·kg−1)
    全钾TK/
    (g·kg−1)
    碱解氮AN/
    (mg·kg−1)
    有效磷AP/
    (mg·kg−1)
    速效钾AK/
    (mg·kg−1)
    丰瘠水平
    Fertility level
    >40>2>1>25>150>40>200Ⅰ(丰富)
    30~401.5~20.8~120~25120~15020~40150~200Ⅱ(较丰富)
    20~301~1.50.6~0.815~2090~12010~20100~150Ⅲ(中等)
    <20<1<0.6<15<90<10<100Ⅳ(缺乏)
    下载: 导出CSV

    表  2  土壤内梅罗指数各属性的分级标准值

    Table  2.   Grading standard values of various attributes of Nemerow index in soil

    土壤指标
    Soil index
    内梅罗分级值 Classification index of Nemorow
    XaXcXp
    SOM/(g·kg−1)10.0020.0030.00
    TN/(g·kg−1)0.751.502.00
    TP/(g·kg−1)0.400.601.00
    TK/(g·kg−1)5.0020.0025.00
    AN/(mg·kg−1)60.00120.00180.00
    AP/(mg·kg−1)5.0010.0020.00
    AK/(mg·kg−1)50.00100.00200.00
    下载: 导出CSV

    表  3  不同土壤类型pH值分布频率(n = 57)

    Table  3.   The distribution frequency of pH-value for different soil types (n = 57)

    土壤类型
    Soil type
    土层
    Soil layer/cm
    分布频率 Distribution frequency/%
    最适宜
    Optimum
    适宜
    Suitable
    不适宜
    Unsuitable
    黄壤
    Yellow earths
    0~1066.6733.330.00
    10~2073.3326.670.00
    20~3080.0020.000.00
    石灰土
    Limestone soils
    0~1070.0030.000.00
    10~2040.0060.000.00
    20~3050.0050.000.00
    水稻土
    Paddy soils
    0~1033.3355.5611.11
    10~2033.3355.5611.11
    20~3033.3355.5611.11
    紫色土
    Purplish soils
    0~1052.1747.830.00
    10~2052.1747.830.00
    20~3052.1747.830.00
    下载: 导出CSV

    表  4  不同土壤类型SOM频率分布表(n = 57)

    Table  4.   SOM frequency distribution of different soil types (n = 57)

    土壤类型
    Soil type
    土层
    Soil layer/cm
    分布频率 Distribution frequency/%
    黄壤
    Yellow earths
    0~100.0020.0053.3326.67
    10~200.000.0046.6753.33
    20~400.006.6713.3380.00
    石灰土
    Limestone soils
    0~1020.0010.0040.0030.00
    10~2010.000.0030.0060.00
    20~4010.000.000.0090.00
    水稻土
    Paddy soils
    0~100.0011.1122.2266.67
    10~200.000.0022.2277.78
    20~400.000.000.00100.00
    紫色土
    Purplish soils
    0~104.358.7034.7852.17
    10~204.350.0021.7473.91
    20~404.350.004.3591.30
    下载: 导出CSV

    表  5  不同土壤类型表土层全量养分分布频率(n = 57)

    Table  5.   Frequency distribution of total nutrients in topsoil of different soil types (n = 57)

    土壤指标
    Soil index
    土壤类型
    Soil type
    分布频率 Distribution frequency/%
    TN黄壤 Yellow earths20.0033.3340.006.67
    石灰土Limestone soils20.0050.0020.0010.00
    水稻土 Paddy soils0.0033.3344.4422.22
    紫色土 Purplish soils8.7030.4343.4817.39
    TP黄壤 Yellow earths73.336.676.6713.33
    石灰土 Limestone soils70.0020.000.0010.00
    水稻土 Paddy soils55.5611.1111.1122.22
    紫色土 Purplish soils78.264.3513.044.35
    TK黄壤 Yellow earths60.0033.336.670.00
    石灰土 Limestone soils50.0020.0030.000.00
    水稻 土Paddy soils11.1188.890.000.00
    紫色土 Purplish soils26.0960.8713.040.00
    下载: 导出CSV

    表  6  不同土壤类型表土层速效养分分布频率(n = 57)

    Table  6.   Frequency distribution of total nutrients in topsoil of different soil types (n = 57)

    土壤指标
    Soil index
    土壤类型
    Soil type
    分布频率 Distribution frequency/%
    AN黄壤 Yellow earths13.336.6733.3346.67
    石灰土 Limestone soils0.0010.0020.0070.00
    水稻土 Paddy soils0.0022.2222.2255.56
    紫色土 Purplish soils8.7017.3917.3956.52
    AP黄壤 Yellow earths73.336.676.6713.33
    石灰土 Limestone soils80.000.0010.0010.00
    水稻土 Paddy soils55.5611.1122.2211.11
    紫色土 Purplish soils86.968.704.350.00
    AK黄壤 Yellow earths86.676.670.006.67
    石灰土 Limestone soils90.0010.000.000.00
    水稻土 Paddy soils77.7811.110.0011.11
    紫色土 Purplish soils91.304.354.350.00
    下载: 导出CSV

    表  7  不同土壤类型肥力综合评价(n = 57)

    Table  7.   Comprehensive evaluation of fertility in different soil types (n = 57)

    土壤类型
    Soil type
    土层
    Soil layer/cm
    PiP
    pHSOMTNTPTKANAPAK
    黄壤
    Yellow earths
    0~102.732.652.242.702.801.802.582.921.911.71
    10~202.732.311.832.532.801.462.462.871.69
    20~402.732.041.482.142.821.282.142.791.52
    石灰土
    Limestone soils
    0~102.402.602.332.812.691.742.542.971.851.56
    10~202.202.201.732.392.721.162.142.621.50
    20~402.301.851.531.992.710.881.782.591.32
    水稻土
    Paddy soils
    0~102.442.371.912.792.771.782.842.951.821.61
    10~202.441.981.442.602.761.372.672.681.59
    20~402.441.601.252.272.741.202.432.501.42
    紫色土
    Purplish soils
    0~102.522.121.852.742.611.572.672.881.701.50
    10~202.481.671.372.442.651.212.442.781.44
    20~402.521.551.262.262.611.152.312.691.37
    下载: 导出CSV
  • [1] 鲍士旦, 2000. 土壤农化分析[M]. 3版. 北京: 中国农业出版社.
    [2] 葛晓改, 黄志霖, 程瑞梅, 等, 2012. 三峡库区马尾松人工林凋落物和根系输入对土壤理化性质的影响[J]. 应用生态学报, 23(12): 3301-3308. doi:  10.13287/j.1001-9332.2012.0411
    [3] 郇志飞, 潘继花, 朱学礼, 等, 2018. 基于指数和法对日照市茶园土壤养分评价研究[J]. 山东农业科学, 50(11): 105-110. doi:  10.14083/j.issn.1001-4942.2018.11.020
    [4] 黄昌勇, 2000. 土壤学[M]. 中国农业出版社.
    [5] 黄勇, 杨忠芳, 2009. 土壤质量评价国外研究进展[J]. 地质通报, 28(1): 130-136. doi:  10.3969/j.issn.1671-2552.2009.01.016
    [6] 简尊吉, 倪妍妍, 徐瑾, 等, 2021. 中国马尾松林土壤肥力特征[J]. 生态学报, 41(13): 5279-5288. doi:  10.5846/stxb202007021716
    [7] 江厚龙, 张保全, 李钠钾, 等, 2014. 重庆植烟土壤有效养分含量及其影响因素[J]. 中国烟草科学, 35(5): 67-73. doi:  10.13496/j.issn.1007-5119.2014.05.013
    [8] 姜欢欢, 李继红, 范文义, 等, 2009. 三峡库区秭归县景观格局变化及模拟预测[J]. 应用生态学报, 20(2): 474-479.
    [9] 居玛汗·卡斯木, 张丽娜, 范鹏, 等, 2015. 黄土高原不同生态类型区果园地土壤肥力特征综合评价及其区域差异特征研究[J]. 水土保持研究, 22(1): 316-323.
    [10] 阚文杰, 吴启堂, 1994. 一个定量综合评价土壤肥力的方法初探[J]. 土壤通报, 25(6): 245-247. doi:  10.19336/j.cnki.trtb.1994.06.002
    [11] 李亚鸽, 赵威, 郭帅, 等, 2017. 不同类型土壤中酸枣的生物量构成与碳氮特征[J]. 草业科学, 34(8): 1677-1685. doi:  10.11829/j.issn.1001-0629.2017-0144
    [12] 鲁剑巍, 陈防, 王富华, 等, 2002. 湖北省柑橘园土壤养分分级研究[J]. 植物营养与肥料学报, 8(4): 390-394. doi:  10.3321/j.issn:1008-505X.2002.04.002
    [13] 孙威江, 陈泉宾, 林锻炼, 等, 2008. 武夷岩茶不同产地土壤与茶树营养元素的差异[J]. 福建农林大学学报(自然科学版), 37(1): 47-50. doi:  10.13323/j.cnki.j.fafu(nat.sci.).2008.01.012
    [14] 唐昆, 1998, 化学氮肥的污染与防治[J]. 湖南农业, (10): 6-6.
    [15] 唐政, 李文军, 杨荣华, 等, 2020. 湖北省秭归县脐橙产业现状与发展展望[J]. 长江技术经济, 4(4): 78-82. doi:  10.19679/j.cnki.cjjsjj.2020.0418
    [16] 陶梦铭, 应虹, 孙强, 等, 2016. 湖北与湖南柑橘园土壤及树体养分状况[J]. 湖北农业科学, 55(13): 3289-3292+3297. doi:  10.14088/j.cnki.issn0439-8114.2016.13.006
    [17] 王华, 陈莉, 宋敏, 等, 2017. 喀斯特常绿落叶阔叶混交林土壤磷钾养分空间异质性[J]. 生态学报, 37(24): 8285-8293. doi:  10.5846/stxb201611182348
    [18] 王静, 徐爽, 闫涛, 等, 2017. 土壤养分对辽东山区主要阔叶树种幼苗生长的影响[J]. 生态学杂志, 36(11): 3148-3159. doi:  10.13292/j.1000-4890.201711.010
    [19] 王振南, 张清平, 陆姣云, 等, 2015. 基于灰色关联度法的不同年龄紫花苜蓿草地土壤肥力评价[J]. 草业科学, 32(8): 1230-1236. doi:  10.11829\j.issn.1001-0629.2014-0473
    [20] 温延臣, 李燕青, 袁亮, 等, 2015. 长期不同施肥制度土壤肥力特征综合评价方法[J]. 农业工程学报, 31(7): 91-99. doi:  10.3969/j.issn.1002-6819.2015.07.014
    [21] 颜雄, 张杨珠, 刘晶, 等, 2008. 洞庭湖区5个茶叶基地土壤的养分状况与肥力质量评价[J]. 湖南农业大学学报(自然科学版), 34(5): 596-600. doi:  10.13331/j.cnki.jhau.2008.05.004
    [22] 杨树晶, 李涛, 干友民, 等, 2014. 阿坝牧区草地不同利用方式与程度对植被碳含量的影响[J]. 草业学报, 23(3): 325-332. doi:  10.11686/cyxb20140338
    [23] 姚强, 李端波, 周程, 等, 2012. 鄂西北丹江口库区柑橘产业土壤肥力综合评价[J]. 河北农业科学, 16(2): 51-54. doi:  10.3969/j.issn.1088-1631.2012.02.013
    [24] 赵蛟, 徐梦洁, 庄舜尧, 等, 2018. 基于模糊综合评价法的建瓯市毛竹林地土壤肥力评价[J]. 土壤通报, 49(6): 1428-1435. doi:  10.19336/j.cnki.trtb.2018.06.23
    [25] 周利利, 段增强, 韩庆忠, 等, 2019. 秭归县柑橘园土壤肥力综合评价[J]. 江苏农业学报, 35(6): 1346-1353. doi:  10.3969/j.issn.1000-4440.2019.06.011
    [26] 周伟, 王文杰, 张波, 等, 2017. 长春城市森林绿地土壤肥力评价[J]. 生态学报, 37(4): 1211-1220. doi:  10.5846/stxb201604180723
    [27] 庄伊美, 1997. 柑桔营养与施肥[M]. 北京: 中国农业出版社.
    [28] 邹蓉, 蒋运生, 王满莲, 等, 2010. 不同土壤条件对槐树生长和生物量的影响[J]. 福建林业科技, 37(3): 88-91. doi:  10.3969/j.issn.1002-7351.2010.03.020
    [29] Chen Y F, Qiang J Y, Ouyang A L, 2021. Relationship between pH value and physical and chemical properties of tobacco-growing soil[J]. Agricultural Biotechnology, 10(2): 99-101+106.
    [30] Chen Y S, Zhang S H, Li H L, et al, 2022. Drivers of nutrient content and spatial variability of soil multifunctionality in the topsoil of Kyrgyzstan[J]. Frontiers in Environmental Science, 10: 1001984. doi:  10.3389/fenvs.2022.1001984
    [31] Jin J, Wang L Q, Müller K, et al, 2021. A 10-year monitoring of soil properties dynamics and soil fertility evaluation in Chinese hickory plantation regions of southeastern China[J]. Scientific Reports, 11: 23531. doi:  10.1038/s41598-021-02947-z
    [32] Jouybari M M, Bijani A, Parvaresh H, et al, 2022. Effects of native and invasive Prosopis species on topsoil physiochemical properties in an arid riparian forest of Hormozgan Province, Iran[J]. Journal of Arid Land, 14(10): 1099-1108. doi:  10.1007/s40333-022-0104-y
    [33] Liu K, Liu Z C, Zhou N, et al, 2022. Diversity‐stability relationships in temperate grasslands as a function of soil pH[J]. Land Degradation & Development, 33(10): 1704-1717. doi:  10.1002/ldr.4259
    [34] Miao C H, Li X C, Lu J H, et al, 2019. The modified model of soil organic matter content grey relation estimation pattern based on hyper-spectral data[J]. Journal of Grey System, 31(2): 51-64.
    [35] Pulido M, Schnabel S, Contador J F L, et al, 2017. Selecting indicators for assessing soil quality and degradation in rangelands of Extremadura (SW Spain)[J]. Ecological Indicators, 74: 49-61. doi:  10.1016/j.ecolind.2016.11.016
    [36] Qu J, Liu Y, Xu X, et al, 2020. Evaluation of the effects of different fertilization modes on black soil fertility in China based on principal component and cluster analysis[J]. Agrochimica, 64(2): 149-166. doi:  10.12871/00021857202025
    [37] Singh S R, Sharma A K, Sharma M K, 2009. Effect of integrated nutrient management on fruit yield, quality, nutrient uptake and orchard soil fertility of apple cv. Red Delicious[J]. Progressive Horticulture, 41(1): 26-29.
    [38] Wu D M, Yu Y C, Xia L Z, et al, 2011. Soil fertility indices of citrus orchard land along topographic gradients in the Three Gorges Area of China[J]. Pedosphere, 21(6): 782-792. doi:  10.1016/S1002-0160(11)60182-3
    [39] Xiloyannis C, Dichio B, Montanaro G, 2010. Sustainable apricot orchard management to improve soil fertility and water use efficiency[J]. Acta Horticulturae, 862: 419-423. doi:  10.17660/ActaHortic.2010.862.64
    [40] Zhao W J, Luo M Q, Li Z L, et al, 2020. Evaluation of soil fertility in a gravel-sand-mulched jujube (Ziziphus jujuba) orchard based on modified nemoro fertility indexing method[J]. Agricultural Research, 9(1): 85-93. doi:  10.1007/s40003-019-00408-8
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  158
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 网络出版日期:  2022-12-23
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回

    关于网站迁移的通知

     尊敬的各位专家、读者:

    本刊网站将于6月28日起迁移至中国林业科学研究院期刊网(https://journals.caf.ac.cn/ldstxtybhxb/),届时旧网址http://www.ldstxtybhxb.com/将停止访问,如需投稿请直接登录http://edit.caf.ac.cn/ldstxtybhxb。由此给您带来不便,敬请谅解!

    如有任何问题,请及时联系编辑部,Tel:010-62889503;E-mail:ldstxtybh@caf.ac.cn。

     

    陆地生态系统与保护学报

    2024-06-25