留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

安徽麝在湖北大别山国家级自然保护区的生境选择

包丽艳 漆俊 周翔 徐红英 付剑 傅强 王鹏程

包丽艳, 漆俊, 周翔, 徐红英, 付剑, 傅强, 王鹏程. 安徽麝在湖北大别山国家级自然保护区的生境选择[J]. 陆地生态系统与保护学报, 2023, 3(5): 71-81. doi: 10.12356/j.2096-8884.2023-0049
引用本文: 包丽艳, 漆俊, 周翔, 徐红英, 付剑, 傅强, 王鹏程. 安徽麝在湖北大别山国家级自然保护区的生境选择[J]. 陆地生态系统与保护学报, 2023, 3(5): 71-81. doi: 10.12356/j.2096-8884.2023-0049
Liyan Bao, Jun Qi, Xiang Zhou, Hongying Xu, Jian Fu, Qiang Fu, Pengcheng Wang. The Habitat Selection of Anhui Musk Deer in the Dabie Mountains National Nature Reserve in Hubei Province[J]. Terrestrial Ecosystem and Conservation, 2023, 3(5): 71-81. doi: 10.12356/j.2096-8884.2023-0049
Citation: Liyan Bao, Jun Qi, Xiang Zhou, Hongying Xu, Jian Fu, Qiang Fu, Pengcheng Wang. The Habitat Selection of Anhui Musk Deer in the Dabie Mountains National Nature Reserve in Hubei Province[J]. Terrestrial Ecosystem and Conservation, 2023, 3(5): 71-81. doi: 10.12356/j.2096-8884.2023-0049

安徽麝在湖北大别山国家级自然保护区的生境选择

doi: 10.12356/j.2096-8884.2023-0049
基金项目: 地方政府委托项目“湖北大别山国家级自然保护区安徽麝生境调查与评价”
详细信息
    作者简介:

    包丽艳:E-mail: 604505807@qq.com

    通讯作者:

    E-mail: pengchengwang@163.com

  • 中图分类号: Q959.8

The Habitat Selection of Anhui Musk Deer in the Dabie Mountains National Nature Reserve in Hubei Province

  • 摘要:   目的  安徽麝(Moschus anhuiensis)是中国特有小型哺乳动物,其种群数量受人为活动干扰的影响持续降低,目前对其生境选择和利用规律认识亟待深入。本研究调查了安徽麝的生境选择,意图揭示其生境选择利用特征,以期为安徽麝物种保护、繁育及生态修复等提供参考。  方法  2022年7月—8月,在湖北大别山国家级自然保护区进行了安徽麝的生境选择野外调查,共记录了52个样地,测定了海拔、植被类型、坡度、坡向、坡位、郁闭度、乔木平均胸径、乔木平均树高、食物丰富度、灌木平均盖度、灌木平均高度、植被覆盖度、距道路距离及距水源距离14个生境变量,利用Vanderploeg选择系数、Scavia选择指数和随机森林分别分析安徽麝的生境选择偏好以及影响安徽麝生境选择的重要变量,同时比较安徽麝生境利用样地和未利用样地的各变量差异。  结果  1)安徽麝生境选择时除了对灌木平均高度、植被覆盖度、食物丰富度不具有显著差异之外,其余变量均具有显著差异。2)在安徽麝生境选择的影响因子中,重要性值最大的是海拔,郁闭度次之,坡向最小。3)安徽麝生境选择偏好于海拔600~1100 m、中上坡位、坡度≥36°、距离水源近、远离道路、阳坡、郁闭度≥0.8、灌木平均盖度≥15%、乔木平均高度≥20 m、乔木平均胸径≥15 cm的针阔混交林以及阔叶林。  结论  安徽麝偏好在相对海拔较高、郁闭度、灌木平均盖度、乔木平均树高、乔木平均胸径都较高、距离水源近且远离干扰的阳坡中上位的阔叶林及针阔混交林中栖息。
  • 图  1  研究区域和样地位置

    Figure  1.  Plot locations at the study area

    图  2  安徽麝痕迹、相机位置和样地图片

    注:a 食痕 Feeding traces;b 足迹 Footprints;c 相机架设位置 Camera deployment locations;d 样地照片 Plot photos。

    Figure  2.  Traces of Anhui musk deer, camera positions and plot photos

    图  3  安徽麝生境利用样地与未利用样地的数值型参数比较

    注:显著性:*,P<0.05;**,P<0.01;***,P<0.001;ns,P >0.05;独立样本t检验:t值,Mann-Whitney U检验:z值。Significant: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, P >0.05; Independent sample t-test: t value, Mann-Whitney U test: z value.

    Figure  3.  Comparison of numerical parameters between utilized and unutilized plots of Anhui musk deer

    图  4  安徽麝生境选择影响因素重要值排序

    Figure  4.  Ranking of the factors influencing habitat selection of Anhui musk deer

    表  1  生境变量及定义

    Table  1.   Definitions of habitat variables

    类型
    Types
    生境变量
    Habitat variables
    变量定义
    Variable definitions
    数值型
    Numeric
    海拔
    Elevation/m
    利用GPS定位仪测定样地中心点的海拔高度,根据样地在海拔梯度上的变化情况,划分4个等级:<600 m、600~900 m、900~1100 m、≥1100 m。
    郁闭度
    Canopy density
    样地内上层植被林冠的垂直投影面积与该样地面积之比。
    乔木平均胸径
    Average DBH of trees/cm
    样地内所有乔木树种胸径的平均值。
    乔木平均树高
    Average height of trees/m
    样地内所有乔木树种树高的平均值。
    食物丰富度
    Food richness
    5个2 m×2 m样方中主要取食物株数占总株数的平均值。
    灌木平均盖度
    Average shrub cover/%
    5个2 m×2 m样方中灌木地上部分垂直投影面积占样方面积的平均值。
    灌木平均高度
    Average height of shrubs/cm
    5个2 m×2 m样方中灌木高度的平均值。
    植被覆盖度
    Vegetation coverage/%
    5个1 m×1 m样方中草本地上部分的垂直投影面积占样方面积的平均值。
    坡度
    Slope gradient/°
    利用GPS定位仪测定样地中心的坡度,划分为5级:6°~15°、16°~25°、26°~35°、36°~45°、≥46°。
    距道路距离
    Distance from road/m
    道路矢量数据来源:Open Street Map(https://www.openstreetmap.org/) 。处理方法:在ArcGIS 10.2使用欧氏距离分析法计算得到样地到最近道路的距离,将其分为近(<500 m) 、中(500~1000 m) 、远(≥1000 m)3级。
    数值型
    Numeric
    距水源距离
    Distance from water/m
    河流数据来源:Google Earth Engine(https://code.earthengine.google.com/)下载的30 m高程数据。处理方法:在ArcGIS 10.2通过水文分析工具从DEM数据中提取河流分布数据,并且使用欧氏距离分析法计算样地到最近水源的距离,分为近(<250 m) 、中(250~500 m) 、远(≥500 m)3级。
    离散型
    Discrete
    坡向
    Slope aspect
    根据样地所在的坡面朝向划分为阳坡、阴坡、半阴半阳坡。
    坡位
    Slope position
    根据样地在坡面的位置划分为上坡(含山脊) 、中坡(含山腰) 、下坡(含沟谷) 。
    植被类型
    Vegetation type
    根据保护区现有的植被状况分为3种类型,即针叶林、针阔混交林、阔叶林。
    下载: 导出CSV

    表  2  安徽麝生境利用样地与未利用样地离散型生境变量差异比较

    Table  2.   Comparison of discrete habitat variables between utilized and unutilized plots of Anhui musk deer

    生境变量
    Habitat variables
    分类
    Classification
    样地数量
    Number of plots
    利用样地占比
    Percentage of
    utilized plots/%
    P
    总数
    Total
    利用样地
    Utilized plots
    未利用样地
    Unutilized plots
    坡向
    Slope aspect
    阳坡
    Sunny slope
    2721677.78*
    阴坡
    Shady slope
    148657.14
    半阴半阳坡
    Half sunny and half shady slope
    117463.64
    坡位
    Slope position
    上坡
    Upper slope
    1511473.33**
    中坡
    Middle slope
    2722581.48
    下坡
    Lower slope
    103730
    植被类型
    Vegetation type
    针阔混交林
    Mixed broadleaved-coniferous forest
    40251562.50***
    阔叶林
    Broadleaved forest
    11110100
    针叶林
    Coniferous forest
    1010
      注:显著性 Significant:*,P<0.05;**,P<0.01;***,P<0.001。
    下载: 导出CSV

    表  3  安徽麝生境选择偏好

    Table  3.   Habitat selection preference of Anhui musk deer

    生境变量
    Habitat variables
    分类
    Classification
    利用样地数rij
    Number of utilized plots
    调查样地数pij
    Number of survey plots
    选择系数Wij
    Selection factor
    选择指数Eij
    Selection index
    选择性
    Selection
    海拔
    Elevation/m
    <600 0 1 0.00 −1.00 N
    600~900 6 7 0.48 0.18 P
    900~1100 29 38 0.43 0.12 P
    ≥1100 1 6 0.09 −0.56 N
    郁闭度
    Canopy density
    0.6~0.8 15 28 0.38 −0.14 N
    ≥0.8 21 24 0.62 0.11 P
    乔木平均胸径
    Average DBH of trees/cm
    5~10 4 7 0.27 −0.10 N
    10~15 18 30 0.28 −0.07 N
    ≥15 14 15 0.44 0.14 P
    乔木平均树高
    Average height of trees/m
    5~10 4 7 0.25 −0.14 N
    10~20 31 44 0.30 −0.04 N
    ≥20 1 1 0.42 0.14 P
    灌木平均盖度
    Average shrub cover/%
    <10 19 32 0.27 −0.10 N
    10~15 4 6 0.31 −0.045 RS
    ≥15 13 14 0.40 0.12 P
    坡度
    Slope gradient/°
    6~15 0 3 0.00 −1.00 N
    16~25 8 12 0.20 −0.00 RS
    26~35 19 28 0.20 0.00 RS
    36~45 7 7 0.30 0.20 P
    ≥46 2 2 0.30 0.20 P
    坡向
    Slope aspect
    阳坡
    Sunny slope
    21 27 0.39 0.08 P
    阴坡
    Shady slope
    8 14 0.28 −0.06 N
    半阴半阳坡
    Half sunny and half shady slope
    7 11 0.32 −0.01 N
    坡位
    Slope position
    上坡
    Upper slope
    11 15 0.39 0.09 P
    中坡
    Middle slope
    22 27 0.44 0.14 P
    下坡
    Lower slope
    3 10 0.16 −0.34 N
    植被类型
    Vegetation type
    针阔混交林
    Mixed broadleaved-coniferous forest
    25 40 0.39 0.08 P
    阔叶林
    Broad-leaved forest
    11 11 0.62 0.30 P
    针叶林
    Coniferous forest
    0 1 0.00 −1.00 N
    距道路距离
    Distance from road/m
    <500 9 18 0.24 −0.16 N
    500~1000 13 17 0.37 0.05 P
    ≥1000 14 17 0.39 0.09 P
    距水源距离
    Distance from water/m
    <250 17 20 0.41 0.11 P
    250~500 10 18 0.27 −0.10 N
    ≥500 9 14 0.31 −0.02 N
      注:P:选择或偏好(0<$ {E}_{ij} $≤1) ;RS:随机选择($ {E}_{ij} $=0或接近于0) ;N:不选择或回避(−1≤$ {E}_{ij} $<0) 。P: selection or habitat preference $ ( $0<$ {E}_{ij} $≤1$ ) $; RS: random selection ($ {E}_{ij} $=0 or close to 0); N: not preferred or avoided (−1≤$ {E}_{ij} $<0).
    下载: 导出CSV
  • [1] 查穆哈, 谌利民, 杨双, 等, 2019. 唐家河国家级自然保护区林麝排便点偏好[J]. 动物学杂志, 54(4): 484-492. doi:  10.13859/j.cjz.201904005
    [2] 方元平, 蔡三元, 项俊, 等, 2007. 鄂东大别山生物多样性研究[J]. 华中师范大学学报(自然科学版), 41(2): 268-273. doi:  10.3321/j.issn:1000-1190.2007.02.024
    [3] 付剑, 漆俊, 周林, 等, 2021. 湖北大别山国家级自然保护区鸟兽资源红外相机监测初报[J]. 安徽林业科技, 47(4): 6-10+14. doi:  10.3969/j.issn.2095-0152.2021.04.003
    [4] 顾长明, 刘嵩, 汪国胜, 等, 1998. 安徽大别山原麝资源现状[J]. 野生动物, 19(1): 14-15. doi:  10.19711/j.cnki.issn2310-1490.1998.01.006
    [5] 姜海瑞, 薛文杰, 王淯, 等, 2008. 陕西凤县春季林麝生境的初步分析[J]. 四川动物, 27(1): 115-119. doi:  10.3969/j.issn.1000-7083.2008.01.035
    [6] 刘文华, 佟建明, 2005. 中国的麝资源及其保护与利用现状分析[J]. 中国农业科技导报, 7(4): 28-32. doi:  10.3969/j.issn.1008-0864.2005.04.006
    [7] 鲁庆彬, 王小明, 胡锦矗, 等, 2005. 四川石渠县夏季藏原羚的分布和栖息地特征[J]. 兽类学报, 25(1): 91-96. doi:  10.16829/j.slxb.2005.01.016
    [8] 马建章, 2004. 野生动物管理学[M]. 哈尔滨: 东北林业大学出版社, 32-34.
    [9] 满慧, 黄保祥, 齐进哲, 等, 2022. 蟒河国家级自然保护区华北豹栖息地选择[J]. 野生动物学报, 43(3): 585-594. doi:  10.12375/ysdwxb.20220301
    [10] 米书慧, 赵唱, 孙嘉, 等, 2021. 贺兰山马麝秋季生境选择[J]. 四川动物, 40(2): 169-175. doi:  10.11984/j.issn.1000-7083.20200423
    [11] 尚玉昌, 1998. 行为生态学[M]. 北京: 北京大学出版社, 240.
    [12] 申立泉, 高浩翔, 王功, 等, 2023. 甘肃兴隆山野生马麝夏季卧息生境选择[J]. 生态学杂志, 42(7): 1699-1704. doi:  10.13292/j.1000-4890.202307.016
    [13] 盛和林, 刘志霄, 2007. 中国麝科动物[M]. 上海: 上海科学技术出版社, 82-87.
    [14] 宋璇紫, 米玛旺堆, 2022. 西藏中南部高原鼠兔栖息地选择的潜在影响因素[J]. 湖南生态科学学报, 9(2): 43-50. doi:  10.3969/j.issn.2095-7300.2022.02.006
    [15] 佟梦, 潘世秀, 王向伟, 等, 2010. 甘肃兴隆山自然保护区马麝夏季栖息地特征及生境选择格局[J]. 动物学研究, 31(6): 610-616. doi:  CNKI:SUN:DWXY.0.2010-06-010
    [16] 王会志, 盛和林, 1988. 四川盆地西北缘林麝种群密度及保护利用[J]. 兽类学报, 8(4): 241-249. doi:  10.16829/j.slxb.1988.04.001
    [17] 魏辅文, 王维, 杨光, 等, 1995. 四川马边大风顶自然保护区林麝种群密度初步分析[J]. 四川动物, 14(2): 66-67. doi:  CNKI:SUN:SCDW.0.1995-02-006
    [18] 吴家炎, 王伟, 2006. 中国麝类[M]. 北京: 中国林业出版社, 345.
    [19] 吴建平, 周玲玲, 穆立蔷, 2006. 小兴安岭通河林区原麝夏季对生境的选择[J]. 兽类学报, 26(1): 44-48. doi:  10.16829/j.slxb.2006.01.008
    [20] 向荣伟, 达珍, 吴佳忆, 等, 2021. 北京周边山区狍( Capreolus pygargus)的夏季偏好生境特征[J]. 生态学杂志, 40(10): 3252-3258. doi:  10.13292/j.1000-4890.202109.015
    [21] 项平, 1991. 安徽原麝资源的保护和利用[J]. 野生动物, 4: 7-8+14. doi:  10.19711/j.cnki.issn2310-1490.1991.04.002
    [22] 肖治术, 李欣海, 王学志, 等, 2014. 探讨我国森林野生动物红外相机监测规范[J]. 生物多样性, 22(6): 704-711. doi:  10.3724/SP.J.1003.2014.14075
    [23] 谢勇, 汪成海, 张保卫, 等, 2009. 安徽麝( Moschus anhuiensis)的种群演变兼记天马国家级自然保护区[J]. 江苏教育学院学报(自然科学版), 26(4): 10-12.
    [24] 徐嘉, 暴 旭, 刘振生, 等, 2018. 贺兰山同域分布高山麝和阿拉善马鹿秋季食性的比较研究[J]. 生态学报, 38(10): 3705-3711. doi:  10.5846/stxb201703100404
    [25] 颜忠诚, 陈永林, 1998. 动物的栖息地利用[J]. 生态学杂志, 17(2): 43-49. doi:  10.13292/j.1000-4890.1998.0024
    [26] 杨萃, 马光, 孟秀祥, 等, 2011. 凉山山系林麝夏季利用生境特征[J]. 生态学杂志, 30(1): 18-23. doi:  10.13292/j.1000-4890.2011.0003
    [27] 杨光美, 郭群毅, 杨雄威, 等, 2023. 基于红外相机数据的贵州高原山地环境野猪生境选择研究[J]. 生态学报, 43(4): 1449-1460. doi:  10.5846/stxb202105131255
    [28] 杨奇森, 冯祚建, 王祖望, 等, 1998. 西藏东南部地区马麝家域的研究[J]. 兽类学报, 18(2): 8-10+12-15. doi:  10.16829/j.slxb.1998.02.002
    [29] 于孝臣, 秋岩明, 宁波, 2000. 原麝和斑羚冬季种间关系的研究[J]. 林业科技, 25(2): 41-44.
    [30] 张冬冬, 张秋霞, 2018. 九龙山自然保护区林麝( Moschus berezovskii)的冬季生境选择[J]. 四川林业科技, 39(4): 64-68. doi:  10.16779/j.cnki.1003-5508.2018.04.016
    [31] 张冬冬, 朱洪强, 葛志勇, 等, 2015. 黄泥河自然保护区原麝冬季栖息地的选择[J]. 西北农林科技大学学报(自然科学版), 43(6): 15-20. doi:  10.13207/j.cnki.jnwafu.2015.06.001
    [32] 张明海, 2001. 大兴安岭呼中地区冬季驼鹿对生境的选择性[J]. 兽类学报, 21(4): 310-313. doi:  10.16829/j.slxb.2001.04.010
    [33] Benson J F, Chamberlain M J, 2005. Space use and habitat selection by female Louisiana black bears in the Tensas River Basin of Louisiana[J]. Journal of Wildlife Management, 71(1): 117-126. doi:  10.2193/2005-580
    [34] Cody M L, 1978. Habitat selection and interspecific territoriality among the sylviid warblers of England and Sweden[J]. Ecological Monographs, 48(4): 351-396. doi:  10.2307/2937239
    [35] Colin S S, Daniel R E, Conor P R, et al, 2021. Using LiDAR and random forest to improve deer habitat models in a managed forest landscape[J]. Forest Ecology and Management, 499: 119580. doi:  10.1016/j.foreco.2021.119580
    [36] Cransac N, Hewison A J M, 1997. Seasonal use and selection of habitat by mouflon ( Ovis gmelina): comparison of the sexes[J]. Behavioural Processes, 41(1): 57-67. doi:  10.1016/s0376-6357(97)00033-8
    [37] Murphy M A, Evans J S, Storfer A, 2010. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics[J]. Ecology, 91(1): 252-261. doi:  10.1890/08-0879.1
    [38] Green M J B, 1986. The distribution, status and conservation of the Himalayan musk deer Moschus chrysogaster[J]. Biological Conservation, 35(4): 347-375. doi:  10.1016/0006-3207(86)90094-7
    [39] Green M J B, 1987. Diet composition and quality in Himalayan musk deer based on fecal analysis[J]. Journal of Wildlife Management, 51(4): 880-892. doi:  10.2307/3801755
    [40] Houtman M N, Dill T R, 1998. The influence of predation risk on diet selectivity: a theoretical analysis[J]. Evolutionary Ecology, 12(3): 251-262. doi:  10.1023/a:1006544031697
    [41] Ilyas O, 2015. Status, habitat use and conservation of Alpine musk deer ( Moschus chrysogaster) in Uttarakhand Himalayas, India[J]. Journal of Applied Animal Research, 43(1): 83-91. doi:  10.1080/09712119.2014.899495
    [42] Jiang F, Zhang J J, Gao H M, et al, 2020. Musk deer ( Moschus spp.) face redistribution to higher elevations and latitudes under climate change in China[J]. Science of the Total Environment, 704: 135335. doi:  10.1016/j.scitotenv.2019.135335
    [43] Jiao S, Chen W M, Wang J L, et al, 2018. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems[J]. Microbiome, 6(1): 146-159. doi:  10.1186/s40168-018-0526-0
    [44] Kapil K K, Douglas A J, 2016. Habitat selection by endangered Himalayan musk deer ( Moschus chrysogaster) and impacts of livestock grazing in Nepal Himalaya: implications for conservation[J]. Journal for Nature Conservation, 31: 38-42. doi:  10.1016/j.jnc.2016.03.002
    [45] Liaw, A, Wiener M, 2002. Classification and regression by random forest[J]. R News, 2(3): 18-22.
    [46] Meisingset E L, Loe L E, Brekkum Ø, et al, 2013. Red deer habitat selection and movements in relation to rods[J]. The Journal of Wildlife Management, 77(1): 181-191. doi:  10.1002/jwmg.469
    [47] Rachlow J L, Terry B R, 1991. Interannual variation in timing and synchrony of parturition in Dall’s sheep[J]. Journal of Mammal, 72(3): 487-492. doi:  10.2307/1382131
    [48] Shen L Q, Gao H X, Wu J, et al, 2023. Birth-site habitat selection of wild alpine musk deer ( Moschus chrysogaster) in the northeastern qing-tibetan plateau of China[J]. Biologia, 78: 141-147. doi:  10.1007/s11756-022-01246-w
    [49] Shrestha M N, 1998. Animal welfare in the musk deer[J]. Applied Animal Behaviour Science, 59(1): 245-250. doi:  10.1016/S0168-1591(98)00139-7
    [50] Singh P B, Mainali K, Jiang Z, et al, 2020. Projected distribution and climate refugia of endangered Kashmir musk deer Moschus cupreus in greater Himalaya, South Asia[J]. Scientific Reports, 10(1): 1511. doi:  10.1038/s41598-020-58111-6
    [51] Singh, P B, Saud P, Cram D, et al, 2019. Ecological correlates of Himalayan musk deer Moschus leucogaster[J]. Ecology and Evolution, 9(1): 4-18. doi:  10.1002/ece3.4435
    [52] Sun X N, Cai R, Jin X L, et al, 2018. Blood transcriptomics of captive forest musk deer ( Moschus berezovskii) and possible associations with the immune response to abscesses[J]. Scientific Reports, 8(1): 599. doi:  10.1038/s41598-017-18534-0
    [53] Vanderploeg H A, Scavia D, 1979. Calculation and use of selectivity coefficients of feeding: zooplankton grazing[J]. Ecological Modelling, 7(2): 135-149. doi:  10.1016/0304-3800(79)90004-8
    [54] Wang P C, Teng M J, He W, et al, 2018. Using habitat selection index for reserve planning and management for snub-nosed golden monkeys at landscape scale[J]. Ecological Indicators, 93: 838-846. doi:  10.1016/j.ecolind.2018.05.070
    [55] Wang W X, He L, Liu S Q, et al, 2016. Behavioral and physiological responses of forest musk deer ( Moschus berezovskii) to experimental fawn manipulation[J]. Acta Ethologica, 19(2): 133-141. doi:  10.1007/s10211-015-0232-x
    [56] Zuo X, Zhao S, Cheng H, et al, 2021. Functional diversity response to geographic and experimental precipitation gradients varies with plant community type[J]. Functional Ecology, 35(9): 2119-2132. doi:  10.1111/1365-2435.13875
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  119
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-06
  • 录用日期:  2023-10-25
  • 网络出版日期:  2023-12-18
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回