留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

林业害虫防治的天敌昆虫应用现状与发展趋势

党英侨 王小艺

党英侨, 王小艺. 林业害虫防治的天敌昆虫应用现状与发展趋势[J]. 陆地生态系统与保护学报, 2024, 4(1): 72-85. doi: 10.12356/j.2096-8884.2024-0002
引用本文: 党英侨, 王小艺. 林业害虫防治的天敌昆虫应用现状与发展趋势[J]. 陆地生态系统与保护学报, 2024, 4(1): 72-85. doi: 10.12356/j.2096-8884.2024-0002
Yingqiao Dang, Xiaoyi Wang. The Status and Trends of Using Natural Enemies in the Biological Control of Forest Insect Pests[J]. Terrestrial Ecosystem and Conservation, 2024, 4(1): 72-85. doi: 10.12356/j.2096-8884.2024-0002
Citation: Yingqiao Dang, Xiaoyi Wang. The Status and Trends of Using Natural Enemies in the Biological Control of Forest Insect Pests[J]. Terrestrial Ecosystem and Conservation, 2024, 4(1): 72-85. doi: 10.12356/j.2096-8884.2024-0002

林业害虫防治的天敌昆虫应用现状与发展趋势

doi: 10.12356/j.2096-8884.2024-0002
基金项目: “十四五”国家重点研发计划项目(2021YFD1400300);国家自然科学基金项目(32301603,31971666)
详细信息
    作者简介:

    党英侨:E-mail:yqdang@caf.ac.cn

    通讯作者:

    E-mail:xywang@caf.ac.cn

  • 中图分类号: S763

The Status and Trends of Using Natural Enemies in the Biological Control of Forest Insect Pests

  • 摘要: 天敌昆虫用于害虫防治的理论提出有100多年,然而天敌昆虫的实际应用比理论研究更早,距今已有1000多年的历史。目前,天敌昆虫的应用研究已取得长足进步,尽管仍有局限存在,但随着第四次工业革命的到来以及公众对环境和自身安全的重视,未来天敌昆虫在林业害虫防治中的应用将得到进一步发展。本文对林业上应用天敌昆虫的成熟策略进行了总结,分析了天敌昆虫的人工繁育和应用技术现状,指出了当前天敌昆虫在林业害虫防治应用中存在的主要问题,如繁殖效率低且成本高、贮存期短、效果评价方法欠科学、以及引进天敌审批困难等。在此基础上,展望了未来天敌昆虫应用的发展趋势,讨论了未来天敌昆虫在林间应用的主要原则和策略、大规模繁育的机械化、质量控制的标准化、与其他新兴技术结合的多种可能方向等问题,以期进一步促进天敌昆虫在林业上的应用和发展。
  • 表  1  寄生性天敌昆虫引进的经典案例

    Table  1.   Classical cases for introducing parasitic natural enemies

    天敌昆虫
    Natural enemies
    靶标害虫
    Target pests
    天敌原产地
    Native ranges of natural enemies
    天敌引进地
    Introduced ranges of
    natural enemies
    参考文献
    References
    大蛾卵跳小蜂(Ooencyrtus kuwanae) 、舞毒蛾卵平腹小蜂(Anastatus disparis 舞毒蛾(Lymantria dispar 欧洲 美国 Legner, 2023
    椰心叶甲啮小蜂(Tetrastichus brontispae 椰心叶甲(Brontispa longissima 印度尼西亚 中国、巴布亚新几内亚、美国等 He et al., 2014
    椰甲截脉姬小蜂(Asecodes hispinarum 椰心叶甲(Brontispa longissima 印度尼西亚、巴布亚新几内亚 中国、萨摩亚、越南等 He et al., 2014
    白蜡吉丁卵跳小蜂(Oobius agrili) 、
    白蜡吉丁啮小蜂(Tetrastichus planipennisi) 、白蜡吉丁柄腹茧蜂(Spathius agrili
    白蜡窄吉丁(Agrilus planipennis 中国 美国、加拿大 Duan et al., 2023
    卡列娜柄腹茧蜂(Spathius galinae 白蜡窄吉丁(Agrilus planipennis 俄罗斯 美国、加拿大 Duan et al., 2023
    瘿小蜂(Cleruchoides noackae 榈蝽(Thaumastocoris peregrinus 巴西 乌拉圭 Martínez et al., 2018
    黑色枝跗瘿蜂(Ibalia leucospoides) 、
    巨型姬蜂(Megarhyssa nortoni) 、
    黑背皱背姬蜂(Rhyssa persuasoira
    松树蜂(Sirex noctilio 新西兰 澳大利亚 Kenis et al., 2019
    灰白塞寄蝇(Cyzenis albicans) 、
    姬蜂(Agrypon flaveolatum
    冬尺蛾(Operophtera brumata 欧洲 加拿大、美国 Kenis et al., 2019
    孟氏胯姬小蜂(Quadrastichus mendeli) 、大痣小蜂(Megastigmus zvimendeli) 、
    克氏瑟姬小蜂(Selitrichodes kryceri
    桉树枝瘿姬小蜂(Leptocybe invasa 澳大利亚 以色列 Kenis et al., 2019
    姬蜂(Lathrolestes thomsoni 桦潜叶蜂(Profenusa thomsoni 欧洲 美国、加拿大 Kenis et al., 2019
    瘿小蜂(Anaphes nitens 桉树象甲(Gonipterus platensis 澳大利亚 葡萄牙 Valente et al., 2019
    下载: 导出CSV
  • [1] Abbes K, Zouba A, Harbi A, et al, 2020. Effect of cold storage on the performance of Trichogramma bourarachae (Pintureau and Babault) (Hymenoptera: Trichogrammatidae)[J]. Egyptian Journal of Biological Pest Control, 30: 1-6. doi:  10.1186/s41938-020-00232-1
    [2] Abdi M K, Jucker C, de Marchi B, et al, 2020. Performance of Sclerodermus brevicornis, a parasitoid of invasive longhorn beetles, when reared on rice moth larvae[J]. Entomologia Experimentalis et Applicata, 169(1): 64-78. doi:  10.1111/eea.12946
    [3] Abe J, Pannebakker B A, 2017. Development of microsatellite markers and estimation of inbreeding frequency in the parasitoid wasp Melittobia[J]. Scientific Reports, 7(1): 39879. doi:  10.1038/srep39879
    [4] Barclay H J, 1987. Models for pest control: complementary effects of periodicreleases of sterile pests and parasitoids[J]. Theoretical Population Biology, 32(1): 76-89. doi:  10.1016/0040-5809(87)90041-4
    [5] Beggs J R, Rees J S, Toft R J, et al, 2008. Evaluating the impact of a biological control parasitoid on invasive Vespula wasps in a natural forest ecosystem[J]. Biological Control, 44(3): 399-407. doi:  10.1016/j.biocontrol.2007.10.016
    [6] Bolckmans K J F, 2003. State of affairs and future directions of product quality assurance in Europe[M]//Quality control and production of biological control agents: theory and testing procedures. Wallingford UK: CABI Publishing, 215-224.
    [7] Brabbs T, Collins D, Hérard F, et al, 2015. Prospects for the use of biological control agents against Anoplophora in Europe[J]. Pest Management Science, 71(1): 7-14. doi:  10.1002/ps.3907
    [8] Cai W Z, Yan Y H, Li L Y, 2005. The earliest records of insect parasitoids in China[J]. Biological Control, 32(1): 8-11. doi:  10.1016/j.biocontrol.2004.08.002
    [9] Camacho-Cervantes M, Ortega-Iturriaga A, Del-Val E, 2017. From effective biocontrol agent to successful invader: the harlequin ladybird (Harmonia axyridis) as an example of good ideas that could go wrong[J]. PeerJ, 5: e3296. doi:  10.7717/peerj.3296
    [10] Chen W, Li Y, Zhang C, et al, 2022a. Cold storage effects on biological parameters of Telenomus remus, a promising egg parasitoid of Spodoptera frugiperda, reared on Spodoptera litura eggs[J]. Journal of Pest Science, 96: 1365-1378. doi:  10.1007/s10340-022-01515-2
    [11] Chen X, Chen H, Zhao M, et al, 2022b. Insect industrialization and prospect in commerce: a case of China[J]. Entomological Research, 52(4): 178-194. doi:  10.1111/1748-5967.12576
    [12] Cioffi R, Travaglioni M, Piscitelli G, et al, 2020. Artificial intelligence and machine learning applications in smart production: progress, trends, and directions[J]. Sustainability, 12(2): 492. doi:  10.3390/su12020492
    [13] Cock M J W, Day R K, Hinz H L, et al, 2015. The impacts of some classical biological control successes[J]. CABI Reviews, 10(42): 1-58. doi:  10.1079/PAVSNNR201510042
    [14] Cock M J W, van Lenteren J C, Brodeur J, et al, 2010. Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control?[J]. BioControl, 55: 199-218. doi:  10.1007/s10526-009-9234-9
    [15] Colinet H, Hance T, 2010. Interspecific variation in the response to low temperature storage in different aphid parasitoids[J]. Annals of Applied Biology, 156(1): 147-156. doi:  10.1111/j.1744-7348.2009.00374.x
    [16] Conti E, Avila G, Barratt B, et al, 2021. Biological control of invasive stink bugs: review of global state and future prospects[J]. Entomologia Experimentalis et Applicata, 169(1): 28-51. doi:  10.1111/eea.12967
    [17] Cornell H V, Hawkins B A, 1993. Accumulation of native parasitoid species on introduced herbivores: a comparison of hosts as natives and hosts as invaders[J]. The American Naturalist, 141: 847-865. doi:  10.1086/285512
    [18] Culshaw-Maurer M, Sih A, Rosenheim J A, 2020. Bugs scaring bugs: enemy-risk effects in biological control systems[J]. Ecology Letters, 23(11): 1693-1714. doi:  10.1111/ele.13601
    [19] Daane K M, Mills N J, Tauber M J, 2002. Augmentative controls[J]. Encyclopedia of Pest Management, 1: 36-38.
    [20] Despland E, Lessard J P, 2022. Social predation by ants as a mortality source for an arboreal gregarious forest pest[J]. Basic and Applied Ecology, 59: 82-91. doi:  10.1016/j.baae.2022.01.001
    [21] Duan J J, Bauer L S, Abell K J, et al, 2015. Population dynamics of an invasive forest insect and associated natural enemies in the aftermath of invasion: implications for biological control[J]. Journal of Applied Ecology, 52(5): 1246-1254. doi:  10.1111/1365-2664.12485
    [22] Duan J J, Gould J R, Quinn N F, et al, 2023. Protection of North American ash against emerald ash borer with biological control: ecological premises and progress toward success[J]. BioControl, 68(2): 87-100. doi:  10.1007/s10526-023-10182-w
    [23] Elkinton J S, Boettner G H, 2012. Benefits and harm caused by the introduced generalist tachinid, Compsilura concinnata, in North America[J]. BioControl, 57: 277-288. doi:  10.1007/s10526-011-9437-8
    [24] Fernandez-Conradi P, Castagneyrol B, Jactel H, et al, 2021. Combining phytochemicals and multitrophic interactions to control forest insect pests[J]. Current Opinion in Insect Science, 44: 101-106. doi:  10.1016/j.cois.2021.04.007
    [25] Fischbein D, Corley J C, 2015. Classical biological control of an invasive forest pest: a world perspective of the management of Sirex noctilio using the parasitoid Ibalia leucospoides (Hymenoptera: Ibaliidae)[J]. Bulletin of Entomological Research, 105(1): 1-12. doi:  10.1017/S0007485314000418
    [26] Fischbein D, Lantschner M V, Corley J C, 2019. Modelling the distribution of forest pest natural enemies across invaded areas: towards understanding the influence of climate on parasitoid establishment success[J]. Biological Control, 132: 177-188. doi:  10.1016/j.biocontrol.2019.02.016
    [27] Flanders S E, 1949. Culture of entomophagous insects[J]. The Canadian Entomologist, 81(11): 257-274. doi:  10.4039/Ent81257-11
    [28] Giles K L, McCornack B P, Royer T A, et al, 2017. Incorporating biological control into IPM decision making[J]. Current Opinion in Insect Science, 20: 84-89. doi:  10.1016/j.cois.2017.03.009
    [29] Gontijo L M, 2019. Engineering natural enemy shelters to enhance conservation biological control in field crops[J]. Biological control, 130: 155-163. doi:  10.1016/j.biocontrol.2018.10.014
    [30] Gopalkrishna H R, Chakravarthy A K, Prasad H N N, 2022. Enhancing genetic efficiency of natural enemies of crop pests[M]//Genetic methods and tools for managing crop pests. Singapore: Springer Nature Singapore, 211-249.
    [31] Grabenweger G, Kehrli P, Zweimueller I, et al, 2010. Temporal and spatial variations in the parasitoid complex of the horse chestnut leafminer during its invasion of Europe[J]. Biological Invasions, 12: 2797-2813. doi:  10.1007/s10530-009-9685-z
    [32] Graebner L, Moreno D S, Baritelle J L, 1984. The Fillmore citrus protective district: a success story in integrated pest management[J]. Bulletin of the ESA, 30(4): 27-33. doi:  10.1093/besa/30.4.27
    [33] Gurr G M, Kvedaras O L, 2010. Synergizing biological control: scope for sterile insect technique, induced plant defences and cultural techniques to enhance natural enemy impact[J]. Biological Control, 52(3): 198-207. doi:  10.1016/j.biocontrol.2009.02.013
    [34] Gurr G M, You M, 2016. Conservation biological control of pests in the molecular era: new opportunities to address old constraints[J]. Frontiers in Plant Science, 6: 1255. doi:  10.3389/fpls.2015.01255
    [35] Guyot V, Castagneyrol B, Vialatte A, et al, 2015. Tree diversity limits the impact of an invasive forest pest[J]. PloS ONE, 10(9): e0136469. doi:  10.1371/journal.pone.0136469
    [36] He L S, Din Z M, Lai Y M., 2014. A review of the status of the larval parasitoid, Asecodes hispinarum Boucek, and of the pupal parasitoid, Tetrastichus brontispae Ferriere (Hymenoptera: Eulophidae), as biological control agents of the coconut leaf beetle, Brontispa longissima (Gestro)[J]. Life: The Excitement of Biology, 2(1): 42-63. doi:  10.9784/LEB2(1)He.01
    [37] Hermann S L, Landis D A, 2017. Scaling up our understanding of non-consumptive effects in insect systems[J]. Current Opinion in Insect Science, 20: 54-60. doi:  10.1016/j.cois.2017.03.010
    [38] Hoelmer K A, Sforza R F H, Cristofaro M, 2023. Accessing biological control genetic resources: the United States perspective[J]. BioControl, 68: 269-280. doi:  10.1007/s10526-023-10179-5
    [39] Horrocks K J, Avila G A, Holwell G I, et al, 2020. Integrating sterile insect technique with the release of sterile classical biocontrol agents for eradication: is the Kamikaze Wasp Technique feasible?[J]. BioControl, 65(3): 257-271. doi:  10.1007/s10526-020-09998-7
    [40] Howarth F G, 1983. Classical biocontrol: panacea or Pandora’s box[J]. Proceedings of the Hawaiian Entomological Society, 24: 239-244.
    [41] Howarth F G, 1991. Environmental impacts of classical biological control[J]. Annual Review of Entomology, 36: 485-509. doi:  10.1146/annurev.en.36.010191.002413
    [42] Imrei Z, Domingue M J, Lohonyai Z, et al, 2021. Identification of pheromone components of Plagionotus detritus (Coleoptera: Cerambycidae), and attraction of conspecifics, competitors, and natural enemies to the pheromone blend[J]. Insects, 12(10): 899. doi:  10.3390/insects12100899
    [43] Javaid N, 2023. Integration of context awareness in Internet of Agricultural Things[J]. ICT Express, 9(2): 189-196. doi:  10.1016/j.icte.2021.09.004
    [44] Joppa L N, 2017. The case for technology investments in the environment[J]. Nature, 552: 325. doi:  10.1038/d41586-017-08675-7
    [45] Jucker C, Hardy I C W, Malabusini S, et al, 2020. Factors affecting the reproduction and mass-rearing of Sclerodermus brevicornis (Hymenoptera: Bethylidae), a natural enemy of exotic flat-faced longhorn beetles (Coleoptera: Cerambycidae: Lamiinae)[J]. Insects, 11(10): 657. doi:  10.3390/insects11100657
    [46] Jutsum A R, 1988. Commercial application of biological control: status and prospects[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 318(1189): 357-373. doi:  10.1098/rstb.1988.0014
    [47] Keerthana M. , Shashank D U, Singh M K, et al, 2023. Introducing natural enemies of insect pests as biological control: scope and future prospects[J]. Vigyan Varta, 4(6): 203-205.
    [48] Kelly J L, Hagler J R, Kaplan I, 2014. Semiochemical lures reduce emigration and enhance pest control services in open-field predator augmentation[J]. Biological Control, 71: 70-77. doi:  10.1016/j.biocontrol.2014.01.010
    [49] Kenis M, Hurley B P, Colombari F, et al, 2019[2024-01-10]. Guide to the classical biological control of insect pests in planted and natural forests[R/OL]. FAO Forestry Paper No. 182. Rome: FAO. http://www.fao.org/3/ca3677en/ca3677en.pdf.
    [50] Kenis M, Hurley B P, Hajek A E, et al, 2017. Classical biological control of insect pests of trees: facts and figures[J]. Biological Invasions, 19: 3401-3417. doi:  10.1007/s10530-017-1414-4
    [51] Kumar V, Mehra L, McKenzie C L, et al, 2020. “Predator-In-First”: a preemptive biological control strategy for sustainable management of pepper pests in Florida[J]. Sustainability, 12(18): 7816. doi:  10.3390/su12187816
    [52] Landis D A, Orr D B, 1996 [2024-01-10]. Biological control: approaches and applications[M/OL]. Radcliffe E B, Hutchison W D, Cancelado R E. Radcliffe's IPM World Textbook. St. Paul, MN: University of Minnesota. https://ipmworld.umn.edu/landis.
    [53] Lavandero B, Wratten S, Hagler J, et al, 2004. The need for effective marking and tracking techniques for monitoring the movements of insect predators and parasitoids[J]. International Journal of Pest Management, 50(3): 147-151. doi:  10.1080/09670870410001731853
    [54] LeBeck L M, Leppla N C, 2021. 2021 guidelines for purchasing and using commercial natural enemies and biopesticides in North America: IN849/IPM-146, 02/2021[J]. EDIS, (2): 1-14. doi:  10.32473/edis-in849-2021
    [55] Legner E F, 2023[2023-08-18]. Biological control in forests[M/OL]. https://faculty.ucr.edu/~legneref/biotact/bc-34.htm#Strategies_in_Forest_ Biological_Control.
    [56] Lenteren J C, Cock M J W, 2020. The uptake of biological control in Latin America and the Caribbean[M]//Biological control in Latin America and the Caribbean: its rich history and bright future. Wallingford UK: CABI, 473-508.
    [57] Leppla N C, 2023. Concepts and methods of quality assurance for mass-reared parasitoids and predators[M]//Mass production of beneficial organisms. Academic Press, 261-290.
    [58] Lommen S T E, de Jong P W, Pannebakker B A, 2017. It is time to bridge the gap between exploring and exploiting: prospects for utilizing intraspecific genetic variation to optimize arthropods for augmentative pest control–a review[J]. Entomologia Experimentalis et Applicata, 162(2): 108-123. doi:  10.1111/eea.12510
    [59] Lommen S T E, (2013-05-16) [2024-01-10]. Exploring and exploiting natural variation in the wings of a predatory ladybird beetle for biological control[D/OL]. Leiden, The Netherlands: University of Leiden. http://hdl.handle.net/1887/20872.
    [60] Lupi D, Jucker C, Rocco A, et al, 2015. Notes on biometric variability in invasive species: the case of Psacothea hilaris hilaris (Pascoe) (Coleoptera, Cerambycidae, Lamiinae)[J]. Bulletin of Insectology, 68(1): 135-145.
    [61] Maňák V, Björklund N, Lenoir L, et al, 2016. Behavioural responses of pine weevils to non-consumptive interactions with red wood ants[J]. Journal of Zoology, 299(1): 10-16. doi:  10.1111/jzo.12321
    [62] Martel V, Johns R C, Jochems-Tanguay L, et al, 2021. The use of UAS to release the egg parasitoid Trichogramma spp. (Hymenoptera: Trichogrammatidae) against an agricultural and a forest pest in Canada[J]. Journal of Economic Entomology, 114(5): 1867-1881. doi:  10.1093/jee/toaa325
    [63] Martínez G, González A, Dicke M, 2018. Rearing and releasing the egg parasitoid Cleruchoides noackae, a biological control agent for the Eucalyptus bronze bug[J]. Biological Control, 123: 97-104. doi:  10.1016/j.biocontrol.2018.05.008
    [64] Martínez G, 2020. Biological control of forest pests in Uruguay[M]//Forest Pest and Disease Management in Latin America. Cham: Springer, 7-30.
    [65] Mazza G, Francardi V, Simoni S, et al, 2014. An overview on the natural enemies of Rhynchophorus palm weevils, with focus on R. ferrugineus[J]. Biological Control, 77: 83-92. doi:  10.1016/j.biocontrol.2014.06.010
    [66] Meshkova V L, Ridkokasha A D, Omelich A R, et al, 2021. The first results of the biological control of Ips sexdentatus using Thanasimus formicarius in Ukraine[J]. Forestry and Forest Melioration, 138: 91-96. doi:  10.33220/1026-3365.138.2021.91
    [67] Montgomery M E, Lyon S M, 1996. Natural enemies of adelgids in North America: their prospect for biological control of Adelges tsugae (Homoptera: Adelgidae)[C]//Proceedings of the first hemlock woolly adelgid review. Morgantown, WV, USA: USDA Forest Service, 89-102.
    [68] Morales-Ramos J A, Rojas M G, Shapiro-Ilan D I, 2022. Mass production of beneficial organisms: invertebrates and entomopathogens[M]. Academic Press.
    [69] Murdoch W W, Briggs C J, 1996. Theory for biological control: recent developments[J]. Ecology, 77(7): 2001-2013. doi:  10.2307/2265696
    [70] Murphy S T, Briscoe B R, 1999. The red palm weevil as an alien invasive: biology and prospects for biological control as a component of IPM[J]. Biocontrol News and Information, 20: 35-45.
    [71] Naranjo S E, Ellsworth P C, Frisvold G B, 2015. Economic value of biological control in integrated pest management of managed plant systems[J]. Annual Review of Entomology, 60: 621-645. doi:  10.1146/annurev-ento-010814-021005
    [72] Nealis V G, 1991. Natural enemies and forest pest management[J]. The Forestry Chronicle, 67(5): 500-505. doi:  10.5558/tfc67500-5
    [73] Nisole A, Stewart D, Kyei-Poku G, et al, 2020. Identification of spruce budworm natural enemies using a qPCR-based molecular sorting approach[J]. Forests, 11(6): 621. doi:  10.3390/f11060621
    [74] Penn S L, Ridgway R L, Scriven G T, et al, 1998. Quality assurance by the commercial producer of arthropod natural enemies[M]//Ridgway R L, Hoffmann M P, Inscoe M N, et al. Mass-reared natural enemies: application, regulation, and needs. Lanham, MD: Entomological Society of America, Thomas Say Publ, 202-230.
    [75] Pijnakker J, Vangansbeke D, Duarte M, et al, 2020. Predators and parasitoids-in-first: from inundative releases to preventative biological control in greenhouse crops[J]. Frontiers in Sustainable Food Systems, 4: 595630. doi:  10.3389/fsufs.2020.595630
    [76] Powell W, Pickett J A, 2003. Manipulation of parasitoids for aphid pest management: progress and prospects[J]. Pest Management Science, 59(2): 149-155. doi:  10.1002/ps.550
    [77] Ram A, Sharma K, 1977. Selective breeding for improving the fecundity and sex-ratio of Trichogramma fasciatum (Perkins) (Trichogrammatidae: Hymenoptera), an egg parasite of Lepidopterous hosts[J]. Entomologia, 2: 133-137.
    [78] Ramakers P M J, 1990. Manipulation of phytoseiid thrips predators in the absence of thrips[J]. Bulletin SROP, 13(5): 169-172.
    [79] Rowe L, Gibson D, Landis D A, et al, 2021. Wild bees and natural enemies prefer similar flower species and respond to similar plant traits[J]. Basic and Applied Ecology, 56: 259-269. doi:  10.1016/j.baae.2021.08.009
    [80] Roy H, Wajnberg E, 2008. From biological control to invasion: the ladybird Harmonia axyridis as a model species[J]. BioControl, 53(1): 1-4. doi:  10.1007/s10526-007-9127-8
    [81] Seebens H, Blackburn T M, Dyer E E, et al, 2017. No saturation in the accumulation of alien species worldwide[J]. Nature Communications, 8(1): 14435. doi:  10.1038/ncomms14435
    [82] Shah F M, Razaq M, 2021. From agriculture to sustainable agriculture: prospects for improving pest management in industrial revolution 4.0[M]//Handbook of Smart Materials, Technologies, and Devices. Cham: Springer, 1-18.
    [83] Shields M W, Johnson A C, Pandey S, et al, 2019. History, current situation and challenges for conservation biological control[J]. Biological Control, 131: 25-35. doi:  10.1016/j.biocontrol.2018.12.010
    [84] Shivaprakash K N, Swami N, Mysorekar S, et al, 2022. Potential for artificial intelligence (AI) and machine learning (ML) applications in biodiversity conservation, managing forests, and related services in India[J]. Sustainability, 14(12): 7154. doi:  10.3390/su14127154
    [85] Simmonds F, 1947. Improvement of the sex-ratio of a parasite by selection[J]. Canadian Entomologist, 79(3): 41-44. doi:  10.4039/Ent7941-3
    [86] Simon C, Cooley J R, Karban R, et al, 2022. Advances in the evolution and ecology of 13-and 17-year periodical cicadas[J]. Annual Review of Entomology, 67: 457-482. doi:  10.1146/annurev-ento-072121-061108
    [87] Smith C N, 1966. Insect colonization and mass production[M]. San Diego, CA, USA: Academic Press, 612.
    [88] Smith H S, 1919. On some phases of insect control by the biological method[J]. Journal of Economic Entomology, 12: 288-292.
    [89] Soares M A, Campos M R, Passos L C, et al, 2019. Botanical insecticide and natural enemies: a potential combination for pest management against Tuta absoluta[J]. Journal of Pest Science, 92: 1433-1443. doi:  10.1007/s10340-018-01074-5
    [90] Staab M, Schuldt A, 2020. The influence of tree diversity on natural enemies—a review of the “enemies” hypothesis in forests[J]. Current Forestry Reports, 6: 243-259. doi:  10.1007/s40725-020-00123-6
    [91] Stenberg J A, Sundh I, Becher P G, et al, 2021. When is it biological control? A framework of definitions, mechanisms, and classifications[J]. Journal of Pest Science, 94(3): 665-676. doi:  10.1007/s10340-021-01354-7
    [92] Telford A, Cavers S, Ennos R A, et al, 2015. Can we protect forests by harnessing variation in resistance to pests and pathogens?[J]. Forestry: An International Journal of Forest Research, 88(1): 3-12. doi:  10.1093/forestry/cpu012
    [93] Valente C, Gonçalves C, Rainha M, et al, 2019. Biocontrol in practice: managing Gonipterus platensis in Portugal[M]. Colombo: Pesquisa Florestal Brasileira, 39.
    [94] van Driesche R, Hoddle M, 2017 [2024-01-10]. Non-target effects of insect biocontrol agents and trends in host specificity since 1985[J/OL]. CABI Reviews, 1-66. https://doi.org/10.1079/PAVSNNR201611044.
    [95] van Driesche R, Simberloff D, Blossey B, et al, 2016. Integrating biological control into conservation practice[M]. John Wiley & Sons.
    [96] van Lenteren J C, Bale J, Bigler F, et al, 2006. Assessing risks of releasing exotic biological control agents of arthropod pests[J]. Annual Review of Entomology, 51: 609-634. doi:  10.1146/annurev.ento.51.110104.151129
    [97] van Lenteren J C, Bolckmans K, Köhl J, et al, 2018. Biological control using invertebrates and microorganisms: plenty of new opportunities[J]. BioControl, 63: 39-59. doi:  10.1007/s10526-017-9801-4
    [98] van Lenteren J C, Roskam M M, Timmer R, 1997. Commercial mass production and pricing of organisms for biological control of pests in Europe[J]. Biological Control, 10(2): 143-149. doi:  10.1006/bcon.1997.0548
    [99] van Lenteren J C, 2000. Success in biological control of arthropods by augmentation of natural enemies[M]//Biological control: measures of success. Dordrecht: Springer Netherlands, 77-103.
    [100] van Lenteren J C, 2012. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake[J]. BioControl, 57(1): 1-20. doi:  10.1007/s10526-011-9395-1
    [101] Vega F E, Hofstetter R W, 2014. Bark beetles: biology and ecology of native and invasive species[M]. Academic Press.
    [102] Waage J K, Greathead D J, 1988. Biological control: challenges and opportunities[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 318(1189): 111-128. doi:  10.1098/rstb.1988.0001
    [103] Wang S, Chen X, Li Y, et al, 2020. Effects of changing temperature on the physiological and biochemical properties of Harmonia axyridis larvae[J]. Entomologia Generalis, 40(3): 229-241. doi:  10.1127/entomologia/2020/0917
    [104] Waterhouse D F, 1998. Biological Control of Insect Pests: Southeast Asian Prospects[M]. Canberra, Australia: ACIAR, 548.
    [105] Welsh T J, Stringer L D, Caldwell R, et al, 2017. Irradiation biology of male brown marmorated stink bugs: is there scope for the sterile insect technique?[J]. International Journal of Radiation Biology, 93(12): 1357-1363. doi:  10.1080/09553002.2017.1388547
    [106] Wegensteiner R, Wermelinger B, Herrmann M, 2015. Natural enemies of bark beetles: predators, parasitoids, pathogens, and nematodes[M]//Vega F, Hofstetter R. Bark Beetles – Biology and Ecology of Native and Invasive Species. London: Academic Press, 247-304.
    [107] Wilkes A, 1947. The effects of selective breeding on the laboratory propagation of insect parasites[J]. Proceedings of the Royal Society B, 134(875): 227-245. doi:  10.1098/rspb.1947.0012
    [108] Yang Z Q, Wei J R, Wang X Y, 2006. Mass rearing and augmentative releases of the native parasitoid Chouioia cunea for biological control of the introduced fall webworm Hyphantria cunea in China[J]. BioControl, 51: 401-418. doi:  10.1007/s10526-006-9010-z
    [109] Zhan Y, Chen S, Wang G, et al, 2021. Biological control technology and application based on agricultural unmanned aerial vehicle (UAV) intelligent delivery of insect natural enemies (Trichogramma) carrier[J]. Pest Management Science, 77(7): 3259-3272. doi:  10.1002/ps.6371
    [110] Zhang T P, Wang W, 2023. Identification research of Trichagalma glabrosa insect gall pests based on YOLOv5s[J]. Journal of Electrical and Computer Engineering, 2023: 4011188. doi:  10.1155/2023/4011188
    [111] Zhao C, Guo Y, Liu Z, et al, 2021. Temperature and photoperiodic response of diapause induction in Anastatus japonicus, an egg parasitoid of stink bugs[J]. Insects, 12(10): 872. doi:  10.3390/insects12100872
  • 加载中
表(1)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  30
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-10
  • 录用日期:  2024-03-06
  • 网络出版日期:  2024-04-18
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回