留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于δ13C估算水分利用效率的2种模型比较——以峨眉山雷洞坪植物为例

陈淼 刘顺 许格希 陈健 史作民

陈淼, 刘顺, 许格希, 陈健, 史作民. 基于δ13C估算水分利用效率的2种模型比较——以峨眉山雷洞坪植物为例[J]. 陆地生态系统与保护学报. doi: 10.12356/j.2096-8884.2024-0003
引用本文: 陈淼, 刘顺, 许格希, 陈健, 史作民. 基于δ13C估算水分利用效率的2种模型比较——以峨眉山雷洞坪植物为例[J]. 陆地生态系统与保护学报. doi: 10.12356/j.2096-8884.2024-0003
Miao Chen, Shun Liu, Gexi Xu, Jian Chen, Zuomin Shi. Comparison of Two Models Estimating Water Use Efficiency Based on δ13C: A Case Study of Plant Species in Leidongping, Emei Mountains of China[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0003
Citation: Miao Chen, Shun Liu, Gexi Xu, Jian Chen, Zuomin Shi. Comparison of Two Models Estimating Water Use Efficiency Based on δ13C: A Case Study of Plant Species in Leidongping, Emei Mountains of China[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0003

基于δ13C估算水分利用效率的2种模型比较——以峨眉山雷洞坪植物为例

doi: 10.12356/j.2096-8884.2024-0003
基金项目: 中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2021ZA002-2,CAFYBB2022QC002,CAFYBB2022SY021);国家重点研发计划课题(2021YFD2200405)
详细信息
    作者简介:

    陈淼:E-mail:chenmiaocc@163.com

    通讯作者:

    E-mail:shizm@caf.ac.cn

  • 中图分类号: Q948

Comparison of Two Models Estimating Water Use Efficiency Based on δ13C: A Case Study of Plant Species in Leidongping, Emei Mountains of China

  • 摘要:   目的  通过对基于稳定碳同位素值(δ13C)估算水分利用效率(iWUE)的2种模型(是否考虑叶肉导度,gm)之间差异的研究,有助于进一步理解gm对植物iWUE的影响。  方法  本研究选择峨眉山雷洞坪针阔混交林中不同生长型的植物,共采集了48个物种的117个样品,通过测定叶片δ13C,对比了早期估算iWUE模型(iWUEsim模型,将gm看作无穷大)与包含gm效应的iWUE模型(iWUEmes模型)之间的iWUE差异(iWUEdifference),以及这种差异随植物生长型变化的趋势。  结果  结果显示,iWUEsim的平均值(42.23±1.33 μmol·mol−1)显著高于iWUEsem的平均值(28.10±0.65 μmol·mol−1),高估比例3.64%~72.11%(平均49.58±1.30%)。不同生长型植物的iWUEsim均显著大于iWUEsem,其中草本植物高估比例3.64%~48.00%(平均29.20±5.16%),灌木高估比例13.68%~67.73%(平均48.44±1.83%),乔木高估比例32.04%~72.11%(平均54.08±1.47%)。此外,叶片功能性状也对iWUEdifference有重要影响,相比于叶片厚度、叶片干物质含量和单位质量叶片氮含量,单位面积叶片氮含量和比叶重是影响iWUEdifference变化的主要因素。  结论  将gm看作无穷大会造成对基于δ13C估算的iWUE的高估,未来估算植物iWUE时应考虑gm的影响。
  • 图  1  不同生长型植物叶片的iWUE特征

    注:图中s表示物种数,n表示样品数量。图中不同小写字母表示iWUEsim和iWUEsem存在显著差异(P<0.05)。图中不同大写字母表示不同生长型植物间iWUE(iWUEsim,iWUEsem,iWUEdifference)存在显著差异(P<0.05)。The s represents the number of species and n represents the number of samples. Different lowercase letters in the figure indicate significant differences in iWUEsim and iWUEsem (P<0.05). Different uppercase letters in the figure indicate significant differences in iWUE (iWUEsim, iWUEsem, iWUEdifference) among plants of different growth forms (P<0.05).

    Figure  1.  The characteristics of iWUE in leaf of different plant growth forms

    图  2  不同生长型植物叶片的功能性状

    注:LT,叶厚;LDMC,叶干物质含量;LMA,比叶重;Narea,单位面积叶片氮含量;Nmass,单位质量叶片氮含量。图中不同大写字母表示不同生长型植物间叶片功能性状差异显著(P<0.05)。LT, leaf thickness; LDMC, leaf dry matter content; LMA, leaf mass per area; Narea, leaf nitrogen content per unit area; Nmass, leaf nitrogen content per unit mass. Different capital letters in the figure indicate significant differences in leaf functional traits between different growth types of plants (P<0.05).

    Figure  2.  The leaf functional traits in different plant growth forms

    图  3  叶片功能性状与iWUEdifference的关系

    注:LT,叶厚;LDMC,叶干物质含量;LMA,比叶重;Narea,单位面积叶片氮含量;Nmass,单位质量叶片氮含量。LT, leaf thickness; LDMC, leaf dry matter content; LMA, leaf mass per area; Narea, leaf nitrogen content per unit area; Nmass, leaf nitrogen content per unit mass.

    Figure  3.  The relationship between leaf functional traits and iWUEdifference

    图  4  叶片功能性状对iWUEdifference的相对重要性

    注:LT,叶厚;LDMC,叶干物质含量;LMA,比叶重;Narea,单位面积叶片氮含量;Nmass,单位质量叶片氮含量。LT, leaf thickness; LDMC, leaf dry matter content; LMA, leaf mass per area; Narea, leaf nitrogen content per unit area; Nmass, leaf nitrogen content per unit mass.

    Figure  4.  The relative importance of leaf functional traits to iWUEdifference

    表  1  峨眉山雷洞坪针阔混交林中所采集的不同生长型植物名录

    Table  1.   Catalogue of different growth forms of plants collections in coniferous broadleaved mixed forest in Leidongping, Mount Emei

    植物生长型
    Plant growth forms
    采集植物名称
    Species names
    草本植物
    Herbs
    黄水枝(Tiarella polyphylla) 、尖叶堇菜(Viola acutifolia) 、山酢浆草(Oxalis griffithii) 、酸模叶蓼(Persicaria lapathifolia) 、腋花扭柄花(Streptopus simplex
    灌木
    Shrubs
    宝兴悬钩子(Rubus ourosepalus) 、峨眉蔷薇(Rosa omeiensis) 、峨眉卫矛(Euonymus omeiensis) 、枸骨(Ilex cornuta) 、合轴荚蒾(Viburnum sympodiale) 、寒莓(Rubus buergeri) 、华西忍冬(Lonicera webbiana) 、栎叶杜鹃(Rhododendron phaeochrysum) 、荚蒾(Viburnum dilatatum) 、冷地卫矛(Euonymus frigidus) 、南蛇藤(Celastrus orbiculatus) 、绒毛杜鹃(Rhododendron pachytrichum) 、陕甘花楸(Sorbus koehneana) 、山梅花(Philadelphus incanus) 、石枣子(Euonymus sanguineus) 、弯梗菝葜(Smilax aberrans) 、微毛樱桃(Prunus clarofolia) 、五味子(Schisandra chinensis) 、腺果杜鹃(Rhododendron davidii
    乔木
    Trees
    糙皮桦(Betula utilis) 、长尾槭(Acer caudatum) 、川榛(Corylus heterophylla var. sutchuanensis) 、刺榛(Corylus ferox) 、灯笼树(Enkianthus chinensis) 、杜仲(Eucommia ulmoides) 、峨眉冷杉(Abies fabri) 、葛罗槭(Acer davidii) 、华西臭樱(Prunus hypoxantha) 、冷杉属(Abies) 、泡花树(Meliosma cuneifolia) 、青榨槭(Acer davidii) 、山鸡椒(Litsea cubeba) 、深裂中华槭(Acer sinense) 、石灰花楸(Sorbus folgneri) 、四川蜡瓣花(Corylopsis willmottiae) 、四蕊槭(Acer stachyophyllum) 、五裂槭(Acer oliverianum) 、五尖槭(Acer maximowiczii) 、细齿稠李(Prunus obtusata) 、银叶杜鹃(Rhododendron argyrophyllum) 、榆树(Ulmus pumila) 、紫花槭(Acer pseudosieboldianum) 、紫弹树(Celtis biondii
    下载: 导出CSV
  • [1] 曹生奎, 冯起, 司建华, 等, 2009. 植物叶片水分利用效率研究综述[J]. 生态学报, 29(7): 3882-3892. doi:  10.3321/j.issn:1000-0933.2009.07.051
    [2] 管增艳, 石松林, 金亚宁, 等, 2023. 四川峨眉山不同年龄冷杉径向生长对气候变化的响应差异[J]. 山地学报, 41(1): 56-67.
    [3] 任书杰, 于贵瑞, 2011. 中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率[J]. 植物生态学报, 35(2): 119-124.
    [4] 史作民, 冯秋红, 程瑞梅, 等, 2010. 叶肉细胞导度研究进展[J]. 生态学报, 30(17): 4792-4803.
    [5] Adams III W W, Terashima I, 2018. The leaf: a platform for performing photosynthesis[M]. Heidelberg: Springer.
    [6] Adams M A, Buckley T N, Turnbull T L, 2019. Rainfall drives variation in rates of change in intrinsic water use efficiency of tropical forests[J]. Nature Communications, 10(1): 3661. doi:  10.1038/s41467-019-11679-8
    [7] Adams M A, Buckley T N, Turnbull T L, 2020. Diminishing CO2-driven gains in water-use efficiency of global forests[J]. Nature Climate Change, 10(5): 466-471. doi:  10.1038/s41558-020-0747-7
    [8] Adams M A, Turnbull T L, Sprent J I, et al, 2016. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency[J]. Proceedings of the National Academy of Sciences of the United States of America, 113: 4098-4103.
    [9] Belmecheri S, Lavergne A, 2020. Compiled records of atmospheric CO2 concentrations and stable carbon isotopes to reconstruct climate and derive plant ecophysiological indices from tree rings[J]. Dendrochronologia, 63: 125748. doi:  10.1016/j.dendro.2020.125748
    [10] Bernacchi C J, Singsaas E L, Pimentel C, et al, 2001. Improved temperature response functions for models of Rubisco-limited photosynthesis[J]. Plant, Cell and Environment, 24: 253-259.
    [11] Brüggemann N, Gessler A, Kayler Z, et al, 2011. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review[J]. Biogeosciences, 8: 3457-3489. doi:  10.5194/bg-8-3457-2011
    [12] Bussotti F, Pollastrini M, 2015. Evaluation of leaf features in forest trees: methods, techniques, obtainable information and limits[J]. Ecological Indicators, 52: 219-230. doi:  10.1016/j.ecolind.2014.12.010
    [13] Chen L, Flynn D F B, Zhang X, et al, 2014. Divergent patterns of foliar 13C and 15N in Quercus aquifolioides with an altitudinal transect on the Tibetan Plateau: an integrated study based on multiple key leaf functional traits[J]. Journal of Plant Ecology, 8: 303-312.
    [14] Chen M, Shi Z M, Liu S, et al, 2023. Leaf functional traits have more contributions than climate to the variations of leaf stable carbon isotope of different plant functional types on the eastern Qinghai–Tibetan Plateau[J]. Science of the Total Environment, 14: 974316.
    [15] Craig H, 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide[J]. Geochimica et Cosmochimica Acta, 12: 133-149. doi:  10.1016/0016-7037(57)90024-8
    [16] Cooley S S, Fisher J B, Goldsmith G R, 2022. Convergence in water use efficiency within plant functional types across contrasting climates[J]. Nature Plants, 8: 341-345. doi:  10.1038/s41477-022-01131-z
    [17] Cornelissen J H C, Lavorel S, Garnier E, et al, 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 51: 335-380. doi:  10.1071/BT02124
    [18] Cornwell W K, Wright I J, Turner J, et al, 2018. Climate and soils together regulate photosynthetic carbon isotope discrimination within C3 plants worldwide[J]. Global Ecology and Biogeography, 27: 1056-1067. doi:  10.1111/geb.12764
    [19] Dawson T E, Mambelli S, Plamboeck A H, et al, 2002. Stable Isotopes in Plant Ecology[J]. Annual Review of Ecology and Systematics, 33: 507-559. doi:  10.1146/annurev.ecolsys.33.020602.095451
    [20] Diefendorf A F, Mueller K E, Wing S L, 2010. Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 107: 5738-5743.
    [21] Evans J R, 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia, 78: 9-19. doi:  10.1007/BF00377192
    [22] Farquhar G D, 1984. On the nature of carbon isotope discrimination in C4 species[J]. Australian Journal of Plant Physiology, 10(2): 205-226.
    [23] Farquhar G D, Ehleringer J R, Hubick K T, 1989. Carbon Isotope Discrimination and Photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 40: 503-537. doi:  10.1146/annurev.pp.40.060189.002443
    [24] Farquhar G D, Cernusak L A, 2012. Ternary effects on the gas exchange of isotopologues of carbon dioxide[J]. Plant, Cell & Environment, 35(7): 1221-1231.
    [25] Farquhar G D, O’Leary M, Berry J, 1982. On the Relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Australian Journal of Plant Physiology, 9: 121-137.
    [26] Flexas J M, Ribas-Carbo A, Diaz-Espejo J, 2008. Mesophyll conductance to CO2: current knowledge and future prospects[J]. Plant Cell and Environment, 31: 602-621. doi:  10.1111/j.1365-3040.2007.01757.x
    [27] Frank D C, Poulter B, Saurer M, et al, 2015. Water-use efficiency and transpiration across European forests during the Anthropocene[J]. Nature Climate Change, 5(6): 579-583. doi:  10.1038/nclimate2614
    [28] Gago J, Carriquí M, Nadal M, et al, 2019. Photosynthesis Optimized across Land Plant Phylogeny[J]. Trends in Plant Science, 24: 947-958. doi:  10.1016/j.tplants.2019.07.002
    [29] Ghimire B, Riley W J, Koven C D, et al, 2017. A global trait-based approach to estimate leaf nitrogen functional allocation from observations[J]. Ecological Applications, 27: 1421-1434. doi:  10.1002/eap.1542
    [30] Gong X Y, Ma W T, Yu Y Z, et al, 2022. Overestimated gains in water-use efficiency by global forests[J]. Globle Change Biology, 28(16): 4923-4934. doi:  10.1111/gcb.16221
    [31] Hultine K R, Marshall J D, 2000. Altitude trends in conifer leaf morphology and stable carbon isotope composition[J]. Oecologia, 123: 32-40. doi:  10.1007/s004420050986
    [32] Knauer J, Zaehle S, De Kauwe M G, et al, 2019. Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model[J]. Global Change Biology, 25: 1820-1838. doi:  10.1111/gcb.14604
    [33] Knight J D, Livingston N J, Kessel C, 1994. Carbon isotope discrimination and water-use efficiency of six crops grown under wet and dryland conditions[J]. Plant, Cell and Environment, 17(2): 173-179.
    [34] Kohn M J, 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 107: 19691-19695.
    [35] Lai J, Zou Y, Zhang S, et al, 2022. glmm. hp: an R package for computing individual effect of predictors in generalized linear mixed models[J]. Journal of Plant Ecology, 15: 1302-1307. doi:  10.1093/jpe/rtac096
    [36] Lin X, Wu B, Wang J, et al, 2023. Effects of geographical and climatic factors on the intrinsic water use efficiency of tropical plants: evidence from leaf 13C[J]. Plants, 12(4): 951. doi:  10.3390/plants12040951
    [37] Lin Y S, Medlyn B E, Duursma R A, et al, 2015. Optimal stomatal behaviour around the world[J]. Nature Climate Change, 5: 459-464. doi:  10.1038/nclimate2550
    [38] Liu C, He N, Zhang J, et al, 2017. Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency[J]. Functional Ecology, 32(1): 20-28.
    [39] Liu C, Li Y, Xu L, et al, 2019. Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests[J]. Scientific Reports, 9: 5803. doi:  10.1038/s41598-019-42335-2
    [40] Ma W T, Tcherkez G, Wang X M, et al, 2020. Accounting for mesophyll conductance substantially improves 13C‐based estimates of intrinsic water‐use efficiency[J]. New Phytologist, 229(3): 1326-1338.
    [41] Mathias J M, Hudiburg T W. 2022. isocalcR: An R package to streamline and standardize stable isotope calculations in ecological research[J]. Globle Change Biology, 28: 7428-7436.
    [42] Medlyn B E, De Kauwe M G, Lin Y S, et al, 2017. How do leaf and ecosystem measures of water-use efficiency compare[J]. New Phytologist, 216(3): 758-770. doi:  10.1111/nph.14626
    [43] Midolo G, De Frenne P, Hölzel N, et al, 2019. Global patterns of intraspecific leaf trait responses to elevation[J]. Global Change Biology, 25: 2485-2498. doi:  10.1111/gcb.14646
    [44] Moldover M R, Trusler J P M, Edwards T J, et al, 1988. Measurement of the universal gas constant R using a spherical acoustic resonator[J]. Physical Review Letters, 60(4): 249-252. doi:  10.1103/PhysRevLett.60.249
    [45] Murphy B P, Bowman D M J S, 2009. The carbon and nitrogen isotope composition of Australian grasses in relation to climate[J]. Functional Ecology, 23(6): 1040-1049. doi:  10.1111/j.1365-2435.2009.01576.x
    [46] Onoda Y, Hikosaka K, Hirose T. 2004. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency[J]. Functional Ecology, 18: 419-425.
    [47] Onoda Y, Wright I J, Evans J R, et al, 2017. Physiological and structural tradeoffs underlying the leaf economics spectrum[J]. New Phytologist, 214: 1447-1463. doi:  10.1111/nph.14496
    [48] Peguero-Pina J J, Siso S, Flexas J, et al, 2017. Coordinated modifications in mesophyll conductance, photosynthetic potentials and leaf nitrogen contribute to explain the large variation in foliage net assimilation rates across Quercus ilex provenances[J]. Tree Physiology, 37: 1084-1094. doi:  10.1093/treephys/tpx057
    [49] Pérez-Harguindeguy N, Díaz S, Garnier E, et al, 2013. New handbook for standardised measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 61: 167-234. doi:  10.1071/BT12225
    [50] Peri P L, Ladd B, Pepper D A, et al, 2012. Carbon (δ13C) and nitrogen (δ15N) stable isotope composition in plant and soil in Southern Patagonia’s native forests[J]. Global Change Biology, 18: 311-321. doi:  10.1111/j.1365-2486.2011.02494.x
    [51] Rao Z, Guo W, Cao J, et al, 2017. Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: a global review[J]. Earth-Science Reviews, 165: 110-119. doi:  10.1016/j.earscirev.2016.12.007
    [52] Stangl Z R, Tarvainen L, Wallin G, et al, 2019. Diurnal variation in mesophyll conductance and its influence on modelled water-use efficiency in a mature boreal Pinus sylvestris stand[J]. Photosynthesis Research, 141(1): 53-63. doi:  10.1007/s11120-019-00645-6
    [53] Stocker B, Wang H, Smith N, et al, 2019. P-model v1.0: an optimalitybased light use efficiency model for simulating ecosystem gross primary production[J]. Geoscientific Model Development Discussion, 37: 1-59.
    [54] Tang S, Lai Y, Tang X, et al, 2021. Multiple environmental factors regulate the large-scale patterns of plant water use efficiency and nitrogen availability across China’s forests[J]. Environmental Research Letters, 16(3): 34026. doi:  10.1088/1748-9326/abe3bb
    [55] Voelker S L, Brooks J R, Meinzer F C, et al, 2016. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies[J]. Global Change Biology, 22(2): 889-902. doi:  10.1111/gcb.13102
    [56] Wang J, Wen X, 2022. Limiting resource and leaf functional traits jointly determine distribution patterns of leaf intrinsic water use efficiency along aridity gradients[J]. Frontiers in Plant Science, 13: 909603. doi:  10.3389/fpls.2022.909603
    [57] Wang X, Chen G, Wu M, et al, 2023. Differences in the patterns and mechanisms of leaf and ecosystem-scale water use efficiencies on the Qinghai-Tibet Plateau[J]. Catena, 222: 106874. doi:  10.1016/j.catena.2022.106874
    [58] Zhang Y J, Cao K F, Sack L, et al, 2015. Goldstein G. Extending the generality of leaf economic design principles in the cycads, an ancient lineage[J]. New Phytologist, 206: 817-829. doi:  10.1111/nph.13274
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  30
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-10
  • 录用日期:  2024-04-30

目录

    /

    返回文章
    返回