留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SCOPE模型的樟子松人工林日光诱导叶绿素荧光及初级生产力模拟与评估

张宇昕 杨凯捷 丛巍巍 陆森 张劲松 王锋

张宇昕, 杨凯捷, 丛巍巍, 陆森, 张劲松, 王锋. 基于SCOPE模型的樟子松人工林日光诱导叶绿素荧光及初级生产力模拟与评估[J]. 陆地生态系统与保护学报. doi: 10.12356/j.2096-8884.2024-0004
引用本文: 张宇昕, 杨凯捷, 丛巍巍, 陆森, 张劲松, 王锋. 基于SCOPE模型的樟子松人工林日光诱导叶绿素荧光及初级生产力模拟与评估[J]. 陆地生态系统与保护学报. doi: 10.12356/j.2096-8884.2024-0004
Yuxin Zhang, Kaijie Yang, Weiwei Cong, Sen Lu, Jinsong Zhang, Feng Wang. Simulation and Assessment of Sun-induced Chlorophyll Fluorescence and Gross Primary Production in Pinus sylvestris var. mongolica Plantation Based on the SCOPE Model[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0004
Citation: Yuxin Zhang, Kaijie Yang, Weiwei Cong, Sen Lu, Jinsong Zhang, Feng Wang. Simulation and Assessment of Sun-induced Chlorophyll Fluorescence and Gross Primary Production in Pinus sylvestris var. mongolica Plantation Based on the SCOPE Model[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0004

基于SCOPE模型的樟子松人工林日光诱导叶绿素荧光及初级生产力模拟与评估

doi: 10.12356/j.2096-8884.2024-0004
基金项目: 中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2020QD002);国家自然科学基金项目(32171875)
详细信息
    作者简介:

    张宇昕:E-mail:zhangyuxin@caf.ac.cn

    通讯作者:

    E-mail:wangfeng@caf.ac.cn

  • 中图分类号: Q141

Simulation and Assessment of Sun-induced Chlorophyll Fluorescence and Gross Primary Production in Pinus sylvestris var. mongolica Plantation Based on the SCOPE Model

  • 摘要:   目的  检验SCOPE(Soil Canopy Observation of Photosynthesis and Energy fluxes)模型用于模拟樟子松人工林的日光诱导叶绿素荧光(sun-induced chlorophyll fluorescence, SIF)和植被总初级生产力(gross primary productivity, GPP)动态变化的可能性。  方法  对科尔沁沙地南缘樟子松人工林,基于样地SIF、GPP及气象协同观测数据,利用SCOPE模型模拟SIF与GPP的日变化与季节变化,评估了SCOPE模型在典型晴天、典型多云日、整个观测期的模拟效果。  结果  结果显示,利用气象观测数据及冠层参数(入射短波辐射、气温、大气实际水汽压、CO2浓度及叶面积指数),可驱动SCOPE模型模拟樟子松人工林的SIF与GPP。典型晴天日与多云日的SIF模拟值和实测值的R2分别为0.42与0.52,RMSE分别为0.19与0.18 W·m−2·μm−1·sr−1;GPP模拟值和观测值的R2分别为0.78与0.89,RMSE分别为1.87与2.57 μmol·m−2·s−1。在季节尺度上,SIF和GPP模拟值和观测值的R2分别为0.50、0.72,RMSE分别为0.19 W·m−2·μm−1·sr−1和2.64 μmol·m−2·s−1。在整个观测期,多云日的SIF(R2=0.31, RMSE=0.22 W·m−2·μm−1·sr−1)与 GPP(R2=0.80, RMSE =2.42 μmol·m−2·s−1)的模拟效果优于晴天日(SIF:R2=0.30,RMSE=0.26 W·m−2·μm−1·sr−1,GPP:R2=0.64,RMSE=3.64 μmol·m−2·s−1)。SIF模拟值总体高于观测值,当SIF强度较低时易对SIF高估,反之则易低估。GPP的模拟精度较高,模型对较低与较高GPP有所低估,对中间值有所高估。  结论  SCOPE模型可用于日尺度与季节尺度的SIF与GPP模拟,且多云日的模拟精度更高。SCOPE模型对樟子松人工林的GPP模拟结果优于SIF,推测SIF模拟精度较低的原因可能是模型对SIF的模拟是基于阔叶植物的辐射传输过程。未来应发展针对针叶植物的SIF辐射传输模型,为针叶林的辐射传输与荧光遥感监测提供模型基础。
  • 图  1  科尔沁沙地南缘辽宁省建平县樟子松人工林观测点(41°58'169″ N,119°25'104″ E)及荧光通量与气象协同观测设备

    Figure  1.  Observation site of the Pinus sylvestris var. mongolica plantation in Jianping, Liaoning Province, on the southern edge of the Horqin Sandy Land (41°58'169″ N, 119°25'104″ E), and the fluorescence, flux and meteorological co-observation equipment

    图  2  樟子松人工林日光诱导叶绿素荧光(SIF)与植被总初级生产力(GPP)典型晴天和典型多云日变化

    注:典型晴天日(8月22日) ,典型多云日(8月29日)。Typical sunny day (August 22), typical cloudy day (August 29).

    Figure  2.  Diurnal variations of sun-induced chlorophyll fluorescence (SIF) and gross primary productivity (GPP) of Pinus sylvestris var. mongolica plantation on a typical sunny day and a typical cloudy day

    图  3  不同天气状况下樟子松人工林SIF与GPP的日散点图

    注:典型晴天日(8月22日) ,典型多云日(8月22日) 。Typical sunny day (August 22), typical cloudy day (August 29).

    Figure  3.  Scatter plots of daily SIF and GPP in the Pinus sylvestris var. mongolica plantation under different weather conditions

    图  4  樟子松人工林日光诱导叶绿素荧光(SIF)与植被总初级生产力(GPP)全观测期模拟值与实测值评估(2022年8月至12月)

    Figure  4.  Evaluation of simulated and measured sun-induced chlorophyll fluorescence (SIF) and gross primary productivity (GPP) of Pinus sylvestris var. mongolica plantation throughout the observation period (August to December, 2022)

    图  5  樟子松人工林日光诱导叶绿素荧光(SIF)与植被总初级生产力(GPP)全观测期变化(2022年8月至12月)

    Figure  5.  Variations of sun-induced chlorophyll fluorescence (SIF) and gross primary productivity (GPP) of Pinus sylvestris var. mongolica plantation throughout the observation period (August to December 2022)

    图  6  基于SCOPE模型的晴天和多云天气条件下樟子松人工林日光诱导叶绿素荧光(SIF)与植被总初级生产力(GPP)全观测期模拟值与实测值评估

    Figure  6.  Evaluation of simulated and measured sun-induced chlorophyll fluorescence (SIF) and gross primary productivity (GPP) of Pinus sylvestris var. mongolica plantation throughout the observation period under clear and cloudy weather conditions based on the SCOPE model

    表  1  SCOPE模型主要参数

    Table  1.   Key Parameters in SCOPE Model

    类型
    Types
    定义
    Definition
    取值
    Value
    单位
    Unit
    来源
    Source
    叶片生化参数
    Leaf biochemical parameters
    25 ℃时最大羧化速率(Vcmax25
    Maximum carboxylation rate at 25 ℃ (Vcmax25)
    62.5 μmol·m−2·s−1 Cui et al., 2020
    Ball-Berry气孔导度模型斜率(m
    Slope of Ball-Berry stomatal
    conductance model (m)
    观测并计算 观测并计算
    冠层结构参数
    Canopy structure parameters
    叶面积指数(LAI
    Leaf area index (LAI)
    0.88 m2·m−2 观测
    叶倾角分布参数aLIDFa
    Leaf angle distribution parameter a (LIDFa)
    0 Verhoef, 1985
    叶倾角分布参数bLIDFb
    Leaf angle distribution parameter b (LIDFb)
    1 Verhoef, 1985
    叶片辐射传输模型参数
    Leaf radiative transfer
    model parameters
    叶绿素含量(Cab
    Chlorophyll content (Cab)
    20 μg·m−2 Croft et al., 2020
    衰老系数(Cs
    Senescent material fraction (Cs)
    0 Cui et al., 2020
    叶片厚度参数(N
    Leaf thickness parameters (N)
    2 Cui et al., 2020
    光系统荧光量子产额(FQE
    Fluorescence quantum yield efficiency
    at photosystem level (FQE)
    0.01 Croft et al., 2020
    气象参数
    Meteorological parameters
    入射短波辐射(Rin
    Incoming shortwave radiation (Rin)
    观测 W·m−2 观测
    气温(Ta
    Air temperature (Ta)
    观测 观测
    大气实际水汽压(ea
    Atmospheric vapor pressure (ea)
    观测并计算 hPa 观测并计算
    CO2 浓度(Ca
    CO2 concentration (Ca)
    观测 mg·m−3 观测
    下载: 导出CSV
  • [1] 高翔, 周宇, 孟平, 等, 2022. 辽西樟子松人工林净生态系统碳交换[J]. 应用生态学报, 33(5): 1183-1190. doi:  10.13287/j.1001-9332.202205.001
    [2] 国家林业和草原局, 2019. 中国森林资源报告: 2014—2018[M]. 北京: 中国林业出版社.
    [3] 奚雷, 单楠, 杨沈斌, 等, 2019. 基于SCOPE模型的水稻不同生育期日光诱导叶绿素荧光及GPP模拟研究[J]. 遥感技术与应用, 34(3): 488-499. doi:  10.11873/j.issn.1004-0323.2019.3.0488
    [4] 张心竹, 王鹤松, 延昊, 等, 2021. 2001—2018年中国总初级生产力时空变化的遥感研究[J]. 生态学报, 41(16): 6351-6362. doi:  10.5846/stxb202010302781
    [5] Anav A, Friedlingstein P, Beer C, et al, 2015. Spatiotemporal patterns of terrestrial gross primary production: a review[J]. Reviews of Geophysics, 53(3): 785-818. doi:  10.1002/2015RG000483
    [6] Björkman O, Demmig B, 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins[J]. Planta, 170(4): 489-504. doi:  10.1007/BF00402983
    [7] Chang C Y, Guanter L, Frankenberg C, et al, 2020. Systematic assessment of retrieval methods for canopy far-red solar-induced chlorophyll fluorescence using high-frequency automated field spectroscopy[J]. Journal of Geophysical Research: Biogeosciences, 125(7): e2019JG005533. doi:  10.1029/2019JG005533
    [8] Cheng X, Hu M, Zhou Y, et al, 2022. The divergence of micrometeorology sensitivity leads to changes in GPP/SIF between cork oak and poplar[J]. Agricultural and Forest Meteorology, 326(15): 109189. doi:  10.1016/j.agrformet.2022.109189
    [9] Cogliati S, Verhoef W, Kraft S, et al, 2015. Retrieval of sun-induced fluorescence using advanced spectral fitting methods[J]. Remote Sensing of Environment, 169: 344-357. doi:  10.1016/j.rse.2015.08.022
    [10] Cong W, Yang K, Wang F, 2022. Canopy solar-induced chlorophyll fluorescence and its link to transpiration in a temperate evergreen needleleaf forest during the fall transition[J]. Forests, 13(1): 74. doi:  10.3390/f13010074
    [11] Croft H, Chen J, Wang R, et al, 2020. The global distribution of leaf chlorophyll content[J]. Remote Sensing of Environment, 236: 111479. doi:  10.1016/j.rse.2019.111479
    [12] Cui T, Sun R, Xiao Z, et al, 2020. Simulating spatially distributed solar-induced chlorophyll fluorescence using a BEPS-SCOPE coupling framework[J]. Agricultural and Forest Meteorology, 295: 108169. doi:  10.1016/j.agrformet.2020.108169
    [13] Dawson T P, Curran P J, Plummer S E, 1998. LIBERTY—modeling the effects of leaf biochemical concentration on reflectance spectra[J]. Remote Sensing of Environment, 65(1): 50-60. doi:  10.1016/S0034-4257(98)00007-8
    [14] Farquhar G D, von Caemmerer S, Berry J A, 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 149(1): 78-90. doi:  10.1007/BF00386231
    [15] Frankenberg C, Butz A, Toon G C, 2011. Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2 A-band spectra of reflected sun-light[J]. Geophysical Research Letters, 38(3): L03801. doi:  10.1029/2010GL045896
    [16] Frankenberg C, O’Dell C, Guanter L, et al, 2012. Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO2 retrievals[J]. Atmospheric Measurement Techniques, 5(8): 2081-2094. doi:  10.5194/amt-5-2081-2012
    [17] Freedman A, Cavender-Bares J, Kebabian P L, et al, 2002. Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate[J]. Photosynthetica, 40(1): 127-132. doi:  10.1023/A:1020131332107
    [18] Gastellu-Etchegorry J, Lauret N, Yin T, et al, 2017. DART: Recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(6): 2640-2649. doi:  10.1109/JSTARS.2017.2685528
    [19] Gauthier S, Bernier P, Kuuluvainen T, et al, 2015. Boreal forest health and global change[J]. Science, 349(6250): 819-822. doi:  10.1126/science.aaa9092
    [20] Guo H, Zhou X, Dong Y, et al, 2023. On the use of machine learning methods to improve the estimation of gross primary productivity of maize field with drip irrigation[J]. Ecological Modelling, 476: 110250. doi:  10.1016/j.ecolmodel.2022.110250
    [21] Hernández-Clemente R, North P R J, Hornero A, et al, 2017. Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure[J]. Remote Sensing of Environment, 193: 165-179. doi:  10.1016/j.rse.2017.02.012
    [22] Hoshika Y, Fares S, Savi F, et al, 2017. Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests[J]. Agricultural and Forest Meteorology, 234/235(15): 212-221. doi:  10.1016/j.agrformet.2017.01.005
    [23] Hu J, Liu X, Liu L, et al, 2018. Evaluating the performance of the SCOPE model in simulating canopy solar-induced chlorophyll fluorescence[J]. Remote Sensing, 10(2): 250. doi:  10.3390/rs10020250
    [24] Jacquemoud S, Baret F, 1990. PROSPECT: a model of leaf optical properties spectra[J]. Remote Sensing of Environment, 34(2): 75-91. doi:  10.1016/0034-4257(90)90100-Z
    [25] Jacquemoud S, Verhoef W, Baret F, et al, 2009. PROSPECT+SAIL models: A review of use for vegetation characterization[J]. Remote Sensing of Environment, 113(S1): S56-S66. doi:  10.1016/j.rse.2008.01.026
    [26] Kuye A, Jagtap S S, 1992. Analysis of solar radiation data for Port Harcourt, Nigeria[J]. Solar Energy, 49(2): 139-145. doi:  10.1016/0038-092X(92)90148-4
    [27] Kwon H, Kim J, Hong J, et al, 2010. Influence of the Asian monsoon on net ecosystem carbon exchange in two major ecosystems in Korea[J]. Biogeosciences, 7(5): 1493-1504. doi:  10.5194/bg-7-1493-2010
    [28] Li R, Lombardozzi D, Shi M, et al, 2022. Representation of leaf-to-canopy radiative transfer processes improves simulation of far-red solar-induced chlorophyll fluorescence in the Community Land Model Version 5[J]. Journal of Advances in Modeling Earth Systems, 14(3): e2021MS002747. doi:  10.1029/2021MS002747
    [29] Liu B Y H, Jordan R C, 1960. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar Energy, 4(3): 1-19. doi:  10.1016/0038-092X(60)90062-1
    [30] Liu L, Cheng Z, 2010. Detection of vegetation light-use efficiency based on solar-induced chlorophyll fluorescence separated from canopy radiance spectrum[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3): 306-312. doi:  10.1109/JSTARS.2010.2048200
    [31] Ma J, Xiao X, Zhang Y, et al, 2018. Spatial-temporal consistency between gross primary productivity and solar-induced chlorophyll fluorescence of vegetation in China during 2007-2014[J]. Science of The Total Environment, 639(15): 1241-1253. doi:  10.1016/j.scitotenv.2018.05.245
    [32] Madani N, Kimball J S, Affleck D L R, et al, 2014. Improving ecosystem productivity modeling through spatially explicit estimation of optimal light use efficiency[J]. Journal of Geophysical Research: Biogeosciences, 119(9): 1755-1769. doi:  10.1002/2014JG002709
    [33] Meroni M, Busetto L, Colombo R, et al, 2010. Performance of spectral fitting methods for vegetation fluorescence quantification[J]. Remote Sensing of Environment, 114(2): 363-374. doi:  10.1016/j.rse.2009.09.010
    [34] Pedrós R, Goulas Y, Jacquemoud S, et al, 2010. FluorMODleaf: A new leaf fluorescence emission model based on the PROSPECT model[J]. Remote Sensing of Environment, 114(1): 155-167. doi:  10.1016/j.rse.2009.08.019
    [35] Piao S, He Y, Wang X, et al, 2022. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects[J]. Science China Earth Sciences, 65(4): 641-651. doi:  10.1007/s11430-021-9892-6
    [36] Porcar-Castell A, Tyystjärvi E, Atherton J, et al, 2014. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges[J]. Journal of Experimental Botany, 65(15): 4065-4095. doi:  10.1093/jxb/eru191
    [37] Prikaziuk E, Migliavacca M, Su Z (Bob), et al, 2023. Simulation of ecosystem fluxes with the SCOPE model: Sensitivity to parametrization and evaluation with flux tower observations[J]. Remote Sensing of Environment, 2023,284: 113324. doi:  10.1016/j.rse.2022.113324
    [38] Prikaziuk E, Ntakos G, ten Den T, et al, 2022. Using the SCOPE model for potato growth, productivity and yield monitoring under different levels of nitrogen fertilization[J]. International Journal of Applied Earth Observation and Geoinformation, 114: 102997. doi:  10.1016/j.jag.2022.102997
    [39] Qiu B, Chen J M, Ju W, et al, 2019. Simulating emission and scattering of solar-induced chlorophyll fluorescence at far-red band in global vegetation with different canopy structures[J]. Remote Sensing of Environment, 233: 111373. doi:  10.1016/j.rse.2019.111373
    [40] Qiu R, Han G, Ma X, et al, 2020. CO2 Concentration, A Critical Factor Influencing the Relationship between Solar-induced Chlorophyll Fluorescence and Gross Primary Productivity[J]. Remote Sensing, 12(9): 1377. doi:  10.3390/rs12091377
    [41] Raj R, Hamm N A S, Tol C V D, et al, 2016. Uncertainty analysis of gross primary production partitioned from net ecosystem exchange measurements[J]. Biogeosciences, 13(5): 1409-1422. doi:  10.5194/bg-13-1409-2016
    [42] Sinha S K, Padalia H, Patel N R, et al, 2020. Estimation of seasonal sun-induced fluorescence dynamics of Indian tropical deciduous forests using SCOPE and Sentinel-2 MSI[J]. International Journal of Applied Earth Observation and Geoinformation, 91: 102155. doi:  10.1016/j.jag.2020.102155
    [43] Sun Y, Frankenberg C, Wood J D, et al, 2017. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence[J]. Science, 358(6360): eaam5747. doi:  10.1126/science.aam5747
    [44] Thurner M, Beer C, Santoro M, et al, 2014. Carbon stock and density of northern boreal and temperate forests[J]. Global Ecology and Biogeography, 23(3): 297-310. doi:  10.1111/geb.12125
    [45] van der Tol C, Verhoef W, Rosema A, 2009a. A model for chlorophyll fluorescence and photosynthesis at leaf scale[J]. Agricultural and Forest Meteorology, 149(1): 96-105. doi:  10.1016/j.agrformet.2008.07.007
    [46] van der Tol C, Verhoef W, Timmermans J, et al, 2009b. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance[J]. Biogeosciences, 6(12): 3109-3129. doi:  10.5194/bg-6-3109-2009
    [47] Verhoef W, 1984. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model[J]. Remote Sensing of Environment, 16(2): 125-141. doi:  10.1016/0034-4257(84)90057-9
    [48] Verrelst J, Rivera J P, van der Tol C, et al, 2015. Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence?[J]. Remote Sensing of Environment, 166: 8-21. doi:  10.1016/j.rse.2015.06.002
    [49] Verrelst J, van der Tol C, Magnani F, et al, 2016. Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE modeling study[J]. Remote Sensing of Environment, 176: 139-151. doi:  10.1016/j.rse.2016.01.018
    [50] Vilfan N, van der Tol C, Muller O, et al, 2016. Fluspect-B: a model for leaf fluorescence, reflectance and transmittance spectra[J]. Remote Sensing of Environment, 2016,186: 596-615. doi:  10.1016/j.rse.2016.09.017
    [51] Wang R, Chen J M, Luo X, et al, 2019a. Seasonality of leaf area index and photosynthetic capacity for better estimation of carbon and water fluxes in evergreen conifer forests[J]. Agricultural and Forest Meteorology, 279(15): 107708. doi:  10.1016/j.agrformet.2019.107708
    [52] Wang H, Li X, Ma M, et al, 2019b. Improving estimation of gross primary production in dryland ecosystems by a model-data fusion approach[J]. Remote Sensing, 11(3): 225. doi:  10.3390/rs11030225
    [53] Wang H, Xiao J, 2021a. Improving the capability of the SCOPE model for simulating solar-induced fluorescence and gross primary production using data from OCO-2 and flux towers[J]. Remote Sensing, 13(4): 794. doi:  10.3390/rs13040794
    [54] Wang Y, Zeng Y, Yu L, et al, 2021b. Integrated modeling of canopy photosynthesis, fluorescence, and the transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum (STEMMUS–SCOPE v1.0. 0)[J]. Geoscientific Model Development, 14(3): 1379-1407. doi:  10.5194/gmd-14-1379-2021
    [55] Yang P, Prikaziuk E, Verhoef W, et al, 2021. SCOPE 2.0: a model to simulate vegetated land surface fluxes and satellite signals[J]. Geoscientific Model Development, 14(7): 4697-4712. doi:  10.5194/gmd-14-4697-2021
    [56] Yang P, van der Tol C, Verhoef W, et al, 2019. Using reflectance to explain vegetation biochemical and structural effects on sun-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 231: 110996. doi:  10.1016/j.rse.2018.11.039
    [57] Yang P, Verhoef W, van der Tol C, et al, 2017. The mSCOPE model: A simple adaptation to the SCOPE model to describe reflectance, fluorescence and photosynthesis of vertically heterogeneous canopies[J]. Remote Sensing of Environment, 201: 1-11. doi:  10.1016/j.rse.2017.08.029
    [58] Yang X, Tang J, Mustard J F, et al, 2015. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest[J]. Geophysical Research Letters, 42(8): 2977-2987. doi:  10.1002/2015GL063201
    [59] Yuan W, Zheng Y, Piao S, et al, 2019. Increased atmospheric vapor pressure deficit reduces global vegetation growth[J]. Science Advances, 5(8): eaax1396. doi:  10.1126/sciadv.aax1396
    [60] Zarco-Tejada P J, Miller J R, Pedrós R, et al, 2006. FluorMODgui V3.0: A graphic user interface for the spectral simulation of leaf and canopy chlorophyll fluorescence[J]. Computers & Geosciences, 32(5): 577-591. doi:  10.1016/j.cageo.2005.08.010
    [61] Zarco-Tejada P J, Suárez L, González-Dugo V, 2013. Spatial resolution effects on chlorophyll fluorescence retrieval in a heterogeneous canopy using hyperspectral imagery and radiative transfer simulation[J]. IEEE Geoscience and Remote Sensing Letters, 10(4): 937-941. doi:  10.1109/LGRS.2013.2252877
    [62] Zhang Y, Guanter L, Berry J A, et al, 2016a. Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications[J]. Remote Sensing of Environment, 187: 145-155. doi:  10.1016/j.rse.2016.10.016
    [63] Zhang Y, Guanter L, Berry J A, et al, 2014. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models[J]. Global Change Biology, 20(12): 3727-3742. doi:  10.1111/gcb.12664
    [64] Zhang Y, Guanter L, Joiner J, et al, 2018. Spatially-explicit monitoring of crop photosynthetic capacity through the use of space-based chlorophyll fluorescence data[J]. Remote Sensing of Environment, 210: 362-374. doi:  10.1016/j.rse.2018.03.031
    [65] Zhang Y, Xiao X, Jin C, et al, 2016b. Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America[J]. Remote Sensing of Environment, 183: 154-169. doi:  10.1016/j.rse.2016.05.015
    [66] Zhao F, Dai X, Verhoef W, et al, 2016. FluorWPS: a Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-dimensional canopy[J]. Remote Sensing of Environment, 187: 385-399. doi:  10.1016/j.rse.2016.10.036
    [67] Zhu J, Fan Z, Zeng D, et al, 2003. Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestiris var. mongolica on sandy land[J]. Journal of Forestry Research, 14(2): 103-111. doi:  10.1007/BF02856774
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  25
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-10
  • 录用日期:  2024-04-21
  • 网络出版日期:  2024-06-18

目录

    /

    返回文章
    返回