留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

害虫种群的发展与调控

党英侨 王小艺

党英侨, 王小艺. 害虫种群的发展与调控[J]. 陆地生态系统与保护学报. doi: 10.12356/j.2096-8884.2024-0005
引用本文: 党英侨, 王小艺. 害虫种群的发展与调控[J]. 陆地生态系统与保护学报. doi: 10.12356/j.2096-8884.2024-0005
Yingqiao Dang, Xiaoyi Wang. The Development and Regulation of Insect Pest Populations[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0005
Citation: Yingqiao Dang, Xiaoyi Wang. The Development and Regulation of Insect Pest Populations[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0005

害虫种群的发展与调控

doi: 10.12356/j.2096-8884.2024-0005
基金项目: “十四五”国家重点研发计划项目(2021YFD1400300);中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2023MA010);国家自然科学基金项目(31971666)
详细信息
    作者简介:

    党英侨:E-mail:yqdang@caf.ac.cn

    通讯作者:

    E-mail:xywang@caf.ac.cn

  • 中图分类号: S763.3

The Development and Regulation of Insect Pest Populations

  • 摘要: 作为自然界中种类和数量最多的动物类群,昆虫与人类生活息息相关。害虫给人类生产生活造成了严重危害,尽管人类长期与其进行斗争,但很难获胜。这主要是因为害虫种群在时空尺度上均易拓展,而人为干扰只是在局部起到一定的害虫种群数量调控作用。事实上除喷施化学药剂、布设诱集装置和采取营林及捕杀等人为干扰措施外,气候、寄主植物和天敌等其他生物也是害虫种群调控中的重要因子。本文基于害虫种群发生发展现状,在阐明害虫种群自然发展规律的基础上,重点从气候条件、寄主植物和天敌等方面介绍自然条件下害虫种群的抑制因子。通过综述目前常见的几种害虫种群调控途径,认为害虫种群调控需要考虑全部种群分布的区域、作用因子的短期致死率、持续作用时间等,并以最终累积的种群年总死亡率或世代总死亡率为重要指标。综合考虑多种生物和非生物因子,充分利用天敌等自然调控因子的作用,削减各因子之间的不利影响,是更好调控害虫种群的必要途径。
  • 图  1  光肩星天牛、美国白蛾和桃蚜在理想条件下的种群数量变化

    Figure  1.  Population changes of Anoplophora glabripennis, Hyphantria cunea, and Myzus persicae under ideal conditions

    图  2  光肩星天牛、美国白蛾和桃蚜在自然条件下的种群数量变化

    注:自然抑制因子包括不利气候条件、寄主植物抗性和有益生物因子。The natural inhibitory factors include adverse climatic conditions, host plant resistance, and natural enemies.

    Figure  2.  Population changes of Anoplophora glabripennis, Hyphantria cunea, and Myzus persicae under natural conditions

    图  3  光肩星天牛、美国白蛾和桃蚜在多种人为干扰条件下的种群数量变化

    注:人为干扰措施包括人为诱集或捕杀、开发或利用植物抗性、引进或助增天敌。Human intervention measures include trapping or killing, exploitation of plant resistance, and introduction or augmentation of natural enemies.

    Figure  3.  Population changes of Anoplophora glabripennis, Hyphantria cunea, and Myzus persicae under various human intervention measures

    表  1  单一人为干扰措施下光肩星天牛、美国白蛾和桃蚜的种群数量变化

    Table  1.   Population changes of Anoplophora glabripennis, Hyphantria cunea, and Myzus persicae under a single human intervention measure

    人为干扰措施
    Human intervention measure
    光肩星天牛增长倍数
    Growth rate of Anoplophora
    glabripennis
    美国白蛾增长倍数
    Growth rate of Hyphantria
    cunea
    桃蚜增长倍数
    Growth rate of Myzus
    persicae
    1年后
    One year later
    5年后
    Five years later
    1年后
    One year later
    5年后
    Five years later
    1年后
    One year later
    5年后
    Five years later
    施用化学药剂
    Chemical pesticide spraying
    0.2↓ 45.01↑ 0.02↓ 5.60×106 4.43×106 7.02×1053
    人为诱集或捕杀
    Trapping or killing
    1.55↑ 8.93↑ 8.28↑ 3.89×104 3.9×103 9.02×1017
    开发或利用植物抗性
    Exploitation of plant resistance
    1.17↑ 2.12↑ 3.49↑ 520↑ 12.4↑ 2.89×105
    引进或助增天敌
    Introduction or augmentation
    of natural enemies
    3.49↑ 0.0003↓ 94.31↑ <0.0001↓ 9.81×104 <0.0001↓
      注:3种害虫的初始虫口数量均为100头,↓和↑分别表示与初始虫口数量相比,某一时间害虫种群数量在某种措施作用下有所减少和增加。The initial population for each of the three pests is 100 individuals. ↓and↑indicated, respectively, a decrease and increase in the population of the pest at a certain time under the influence of a particular intervention measure compared to the initial population.
    下载: 导出CSV
  • [1] 侯子强, 林金盛, 马林, 等, 2020. 昆虫唾液介导的植物与植食性昆虫防御与反防御研究进展[J]. 湖北民族学院学报(自然科学版), 38(3): 277-282+289. doi:  10.13501/j.cnki.42-1908/n.2020.09.007
    [2] 李定银, 郅军锐, 张涛, 等, 2020. 不同寄主对草地贪夜蛾生长发育和繁殖的影响[J]. 环境昆虫学报, 42(2): 311-317. doi:  10.3969/j.issn.1674-0858.2020.02.10
    [3] 刘鹏程, 刁跃珲, 郭嘉雯, 等, 2021. 昆虫迁飞行为及其调控机制[J]. 应用昆虫学报, 58(3): 520-529. doi:  10.7679/j.issn.2095-1353.2021.054
    [4] 刘瑞霞, 李恩杰, 柏超, 等, 2022. 3-溴丙酮酸对美国白蛾核型多角体病毒的增效作用[J]. 林业科学研究, 35(6): 101-107. doi:  10.13275/j.cnki.lykxyj.2022.006.011
    [5] 刘树生, 1991. 温度对桃蚜和萝卜蚜种群增长的影响[J]. 昆虫学报, 34(2): 189-197. doi:  10.16380/j.kcxb.1991.02.01
    [6] 唐桦, 邵崇斌, 马国骅, 等, 1996. 榆树上光肩星天牛自然种群的生命表研究[J]. 西北林学院学报, 11(4): 45-49.
    [7] 王芳, 张丽华, 韩浩章, 等, 2020. 美国白蛾幼虫对宿迁地区常见园林植物的取食选择[J]. 河南农业大学学报, 54(6): 1002-1008. doi:  10.16445/j.cnki.1000-2340.2020.06.012
    [8] 王景顺, 王相宏, 武三安, 2014. 栎空腔瘿蜂自然种群生命表的组建与分析[J]. 中国农学通报, 30(28): 29-33.
    [9] 王璞, 郭同斌, 魏辉, 等, 2020. 转Bt基因‘南林895’杨对美国白蛾和杨小舟蛾抗虫性分析[J]. 分子植物育种, 18(14): 4645-4656. doi:  10.13271/j.mpb.018.004645
    [10] 魏建荣, 杨忠岐, 苏智, 2003. 利用生命表评价白蛾周氏啮小蜂对美国白蛾的控制作用[J]. 昆虫学报, 46(3): 318-324. doi:  10.16380/j.kcxb.2003.03.01
    [11] 武德功, 詹秋文, 黄保宏, 等, 2018. 不同光周期对高粱蚜种群参数的影响[J]. 昆虫学报, 61(4): 511-518. doi:  10.16380/j.kcxb.2018.04.014
    [12] 信善林, 孔雪华, 苏继祥, 等, 2016. 美国白蛾自然种群生命表的组建与分析[J]. 中国农学通报, 32(26): 55-59.
    [13] 张超然, 吕兵, 王卓, 等, 2016. 浅黄恩蚜小蜂和丽蚜小蜂对温室白粉虱的寄生潜能分析[J]. 植物保护学报, 43(1): 129-134. doi:  10.13802/j.cnki.zwbhxb.2016.01.019
    [14] 赵紫华, 高峰, 2020. 害虫生态调控的生态阈值及关键理论问题[J]. 应用昆虫学报, 57(1): 20-27. doi:  10.7679/j.issn.2095-1353.2020.003
    [15] 郑立飞, 2013. 基于年龄结构与时滞效应的昆虫种间动力学模型研究[D]. 杨凌: 西北农林科技大学.
    [16] 郑雅楠, 祁金玉, 孙守慧, 等, 2012. 白蛾周氏啮小蜂 Chouioia cunea Yang的研究和生物防治应用进展[J]. 中国生物防治学报, 28(2): 275-281. doi:  10.16409/j.cnki.2095-039x.2012.02.019
    [17] Aartsma Y, Cusumano A, de Bobadilla M F, et al, 2019. Understanding insect foraging in complex habitats by comparing trophic levels: insights from specialist host-parasitoid-hyperparasitoid systems[J]. Current Opinion in Insect Science, 32: 54-60. doi:  10.1016/j.cois.2018.11.001
    [18] Brabbs T, Collins D, Hrard F, et al, 2015. Prospects for the use of biological control agents against Anoplophora in Europe[J]. Pest Management Science, 71(1): 7-14. doi:  10.1002/ps.3907
    [19] Dai P, Changchun R, Zang L, et al, 2014. Effects of rearing host species on the host-feeding capacity and parasitism of the whitefly parasitoid Encarsia formosa[J]. Journal of Insect Science, 14(1): 118. doi:  10.1093/jis/14.1.118
    [20] Davies T G E, Field L M, Williamson M S, 2012. The re-emergence of the bed bug as a nuisance pest: implications of resistance to the pyrethroid insecticides[J]. Medical and Veterinary Entomology, 26(3): 241-254. doi:  10.1111/j.1365-2915.2011.01006.x
    [21] Etebari K, Afrad M H, Tang B, et al, 2018. Involvement of microRNA miR-2b-3p in regulation of metabolic resistance to insecticides in Plutella xylostella[J]. Insect Molecular Biology, 27(4): 478-491. doi:  10.1111/imb.12387
    [22] Ferracini C, Ingegno B L, Navone P, et al, 2012. Adaptation of indigenous larval parasitoids to Tuta absoluta (Lepidoptera: Gelechiidae) in Italy[J]. Journal of Economic Entomology, 105(4): 1311-1319. doi:  10.1603/EC11394
    [23] Fidelis E G, das Graças do Carmo D, Santos A A, et al, 2018. Coccinellidae, Syrphidae and Aphidoletes are key mortality factors for Myzus persicae in tropical regions: a case study on cabbage crops[J]. Crop Protection, 112: 288-294. doi:  10.1016/j.cropro.2018.06.015
    [24] Gagnon A E, Audette C, Duval B, et al, 2017. Can the use of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) to control Ostrinia nubilalis (Lepidoptera: Crambidae) be economically sustainable for processing sweet corn?[J]. Journal of Economic Entomology, 110(1): 59-66. doi:  10.1093/jee/tow293
    [25] Perez-Alvarez R, Nault B A, Poveda K, 2019. Effectiveness of augmentative biological control depends on landscape context[J]. Scientific Reports, 9: 8664. doi:  10.1038/s41598-019-45041-1
    [26] Poitou L, Bras A, Pineau P, et al, 2020. Diapause regulation in newly invaded environments: termination timing allows matching novel climatic constraints in the box tree moth, Cydalima perspectalis (Lepidoptera: Crambidae)[J]. Insects, 11(9): 629. doi:  10.3390/insects11090629
    [27] Seehausen M L, Afonso C, Jactel H, et al, 2021. Classical biological control against insect pests in Europe, North Africa, and the Middle East: what influences its success?[J]. NeoBiota, 65: 169-191. doi:  10.3897/neobiota.65.66276
    [28] Shina Y K, Kima S B, Kimab D S, 2020. Attraction characteristics of insect pests and natural enemies according to the vertical position of yellow sticky traps in a strawberry farm with high-raised bed cultivation[J]. Journal of Asia-Pacific Entomology, 23(4): 1062-1066. doi:  10.1016/j.aspen.2020.08.016
    [29] Stork N E, 2018. How many species of insects and other terrestrial arthropods are there on earth?[J]. Annual Review of Entomology, 63: 31-45. doi:  10.1146/annurev-ento-020117-043348
    [30] Tortosa A, Duflot R, Rivers-Moore J, et al, 2022. Natural enemies emerging in cereal fields in spring may contribute to biological control[J]. Agricultural & Forest Entomology, 24(3): 267-278. doi:  10.1111/afe.12490
    [31] Wang H L, Ding B J, Dai J Q, et al, 2022. Insect pest management with sex pheromone precursors from engineered oilseed plants[J]. Nature Sustainability, 5(11): 981-990. doi:  10.1038/s41893-022-00949-x
    [32] Yang Z Q, Wei J R, Wang X Y, 2006. Mass rearing and augmentative releases of the native parasitoid Chouioia cunea for biological control of the introduced fall webworm Hyphantria cunea in China[J]. BioControl, 51(4): 401-418. doi:  10.1007/s10526-006-9010-z
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  42
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-13
  • 录用日期:  2024-01-29
  • 网络出版日期:  2024-04-11

目录

    /

    返回文章
    返回