留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同林龄华北落叶松优势木生长与空间结构的关联性

倪靖峰 吕世琪 王占印 周超凡 刘宪钊

倪靖峰, 吕世琪, 王占印, 周超凡, 刘宪钊. 不同林龄华北落叶松优势木生长与空间结构的关联性[J]. 陆地生态系统与保护学报, 2024, 4(1): 1-10. doi: 10.12356/j.2096-8884.2024-0007
引用本文: 倪靖峰, 吕世琪, 王占印, 周超凡, 刘宪钊. 不同林龄华北落叶松优势木生长与空间结构的关联性[J]. 陆地生态系统与保护学报, 2024, 4(1): 1-10. doi: 10.12356/j.2096-8884.2024-0007
jingfeng Ni, shiqi Lv, zhanyin Wang, chaofan Zhou, xianzhao Liu. Correlation Between Growth and Spatial Structure of Dominant Trees in Larix gmelinii var. principis-rupprechtii Plantations at Different Ages[J]. Terrestrial Ecosystem and Conservation, 2024, 4(1): 1-10. doi: 10.12356/j.2096-8884.2024-0007
Citation: jingfeng Ni, shiqi Lv, zhanyin Wang, chaofan Zhou, xianzhao Liu. Correlation Between Growth and Spatial Structure of Dominant Trees in Larix gmelinii var. principis-rupprechtii Plantations at Different Ages[J]. Terrestrial Ecosystem and Conservation, 2024, 4(1): 1-10. doi: 10.12356/j.2096-8884.2024-0007

不同林龄华北落叶松优势木生长与空间结构的关联性

doi: 10.12356/j.2096-8884.2024-0007
基金项目: “十四五”国家重点研发计划项目(2023YFD2200803);国家自然科学基金项目(32271878)
详细信息
    作者简介:

    倪靖峰:E-mail:nijingfeng107@163.com

    通讯作者:

    E-mail:lxz9179@163.com

  • 中图分类号: S757

Correlation Between Growth and Spatial Structure of Dominant Trees in Larix gmelinii var. principis-rupprechtii Plantations at Different Ages

  • 摘要:   目的  优势木的生长与其周围的相邻木密切相关,探究不同林龄林分中相邻木构成的空间结构特征对目标林木生长的影响,可以为调整空间结构进而激发林分生长潜力提供理论依据。  方法  选择27 a、37 a和46 a 3种不同林龄的华北落叶松人工林,分别设置面积为90 m×60 m、120 m×120 m和120 m×120 m的大样地,以优势木和其最近4株邻近木构建空间结构单元,计算每株优势木的角尺度、大小比数、混交度和密集度等指标,分析不同林龄中优势木在不同空间结构间的生长差异。  结果  优势木胸径和树高年均增长量均有显著的林龄差异,年均增长量随林龄增大而降低。在27 a林分的结构单元中,处于随机分布、优势、零度混交和密集状态的优势木占比最高,优势木平均胸径分别在角尺度为0.50、大小比数为0、混交度为0.75和密集度为1时最大,优势木平均树高分别在角尺度为0、大小比数为0、混交度为0.75和密集度为0.75时最大。在37 a的结构单元中,处于随机分布、优势、零度混交和非常密集状态的优势木占比最高,优势木平均胸径分别在角尺度为0.50、大小比数为0、混交度为0.5和密集度为0时最大,优势木平均树高分别在角尺度为0、大小比数为0、混交度为0.25和密集度为1时最大。在46 a的结构单元中,处于随机分布、优势、零度混交和稀疏状态的优势木占比最高,优势木平均胸径分别在角尺度为0.50、大小比数为0和密集度为0时最大,优势木平均树高分别在角尺度为0、大小比数为0和密集度为0时最大。  结论  水平分布格局、树种多样性、自身个体大小和树冠竞争影响优势木生长特征。在演替过程中,优势木朝着减小聚集程度和竞争压力的方向上发展,适当提升优势木的混交程度和保证优势木个体的生长优势利于其胸径和树高生长。在质量选择阶段,宜进一步选择生长好的优势木作为目标树,适当抚育采伐,优化结构单元,以人工促进天然更新等手段提升林分稳定性。在近自然阶段,应及时清理枯立木,通过人工促进天然更新和清除干扰木,继续优化空间结构。
  • 图  1  不同林龄华北落叶松人工林优势木胸径和树高年均增长量

    Figure  1.  Mean annual increment of DBH and height of dominant trees of Larix gmelinii var. principis-rupprechtii plantations at different ages

    图  2  各林龄林分中的优势木角尺度的分布频率

    Figure  2.  The distribution frequency of the uniform angle index of dominant trees in the plantations with different ages

    图  3  各林龄林分中的优势木大小比数的分布频率

    Figure  3.  The distribution frequency of the dominance of dominant trees in the plantations with different ages

    图  4  各林龄林分中的优势木混交度的分布频率

    Figure  4.  The distribution frequency of the mingling of dominant trees in the plantations with different ages

    图  5  各林龄林分中的优势木密集度的分布频率

    Figure  5.  The distribution frequency of the crowding of dominant trees in the plantations with different ages

    图  6  各林龄林分的优势木在4种空间结构参数不同取值时的平均胸径

    Figure  6.  The mean DBH of dominant trees in the plantations at different ages under each value of four spatial structure parameters

    图  7  各林龄林分的优势木在4种空间结构参数不同取值时的平均树高

    Figure  7.  The mean tree height of dominant trees in the plantations at different ages under each value of four spatial structure parameters

    表  1  调查样地的基本概况

    Table  1.   Basic information of sample plots

    林龄
    Stand
    age/a
    树种组成
    Composition of
    tree species
    林分平均胸径
    Mean DBH /cm
    林分平均高
    Mean height/m
    单木平均冠径
    Mean crown
    radius/m
    优势木 Dominant trees 密度
    Density/
    (trees·hm−2)
    胸径
    DBH/cm
    树高
    Height /m
    冠幅
    Crown width/m
    最大
    Max
    最小
    Min
    最大
    Max
    最小
    Min
    最大
    Max
    最小
    Min
    27 9落1桦−松−栎−杨 13.39±5.45 12.32±4.61 1.05±0.61 31.2 5 21.4 2.1 2.83 0.45 953
    37 8落2桦−松−杨−栎 17.56±7.27 13.99±5.43 1.55±0.76 32.1 5 22.2 2.1 3.64 0.33 914
    46 10落 19.54±5.29 16.77±3.38 1.30±0.48 32.2 5.3 28 2.1 5.60 0.25 949
    下载: 导出CSV

    表  2  空间结构参数的计算公式

    Table  2.   Formulas for calculating spatial structure indexes

    项目 Items公式 Formula公式定义 Formula definition
    角尺度 W$ {W}_{i}=\displaystyle\frac{1}{4}{\sum }_{j=1}^{4}{z}_{ij} $角尺度(Wi)是通过角度α来判断林木个体在水平方向上分布格局的参数,α为对象木与4株相邻木的连线中相邻2条线之间的夹角,zij是第i株对象木的第j个夹角αjα0的比较结果,当(αjα0)时,zij=1,反之zij=0。角尺度取值为0、0.25、0.50、0.75和1,分别代表非常均匀、均匀、随机、聚集和非常聚集5种水平分布格局。
    混交度 M$ {M}_{i}=\displaystyle\frac{1}{4}{\sum }_{j=1}^{4}{v}_{ij} $混交度(Mi)是用于描述树种空间隔离程度的参数,vij是第i株对象木与第j株相邻木的树种比较结果,当相邻木与对象木为同一树种时,vij=0,反之vij=1。混交度取值为0、0.25、0.50、0.75和1,分别代表零度混交、弱混交度、中度混交、高度混交和极强度混交5种树种隔离程度。
    密集度 C$ {C}_{i}=\displaystyle\frac{1}{4}{\sum }_{j=1}^{4}{y}_{ij} $密集度(Ci)是用于描述林木所在空间单元密集程度的参数,yij是第i株对象木冠幅水平投影与第j株相邻木冠幅水平投影的比较结果,当相邻木树冠水平投影与对象木树冠水平投影有重叠时,yij=1,反之yij=0。密集度取值为0、0.25、0.50、0.75和1,分别代表非常稀疏、稀疏、中度密集、密集和非常密集5种密集程度。
    大小比数 U$ {U}_{i}=\displaystyle\frac{1}{4}{\sum }_{j=1}^{4}{k}_{ij} $大小比数(Ui)是用于描述树木大小分化程度的参数,它表示对象木的4株相邻木的胸径大于对象木的情况比例。kij是第i株对象木与第j株相邻木的胸径大小比较结果,当相邻木胸径小于对象木胸径时,kij=0,反之kij=1。大小比数取值为0、0.25、0.50、0.75和1,分别代表林木处于优势、亚优势、中庸、劣态和绝对劣态5种状态。
    下载: 导出CSV

    表  3  不同林龄华北落叶松人工林优势木信息统计

    Table  3.   Statistics of dominant trees in Larix gmelinii var. principis-rupprechtii plantations at different ages

    林龄
    Stand age/a
    胸径
    DBH/cm
    树高
    Height/m
    优势木株数
    Total dominant trees
    优势木株数占比
    Ratio
    27 17.99±3.26 17.05±1.35 204 0.42
    37 22.89±3.82 19.62±1.41 365 0.40
    46 24.26±3.40 20.52±1.47 341 0.36
    下载: 导出CSV
  • [1] 安慧君, 2004. 阔叶红松林空间结构研究[D]. 北京: 北京林业大学.
    [2] 柴宗政, 2014. 秦岭中段华北落叶松人工林生长特性及近自然经营技术研究[D]. 杨凌: 西北农林科技大学.
    [3] 蔡年辉, 许玉兰, 王亚楠, 等, 2019. 基于SSR标记的不同优势等级云南松遗传多样性分析[J]. 植物研究, 39(1): 87-95. doi:  10.7525/j.issn.1673-5102.2019.01.011
    [4] 范慧涛, 李杨, 谷建才, 2018. 木兰围场油松、华北落叶松混交林空间结构对直径生长的影响[J]. 林业与生态科学, 33(4): 373-380. doi:  10.13320/j.cnki.hjfor.2018.0058
    [5] 郭跃东, 2009. 庞泉沟保护区天然华北落叶松林单木生长过程研究[J]. 山西林业科技, 38(2): 6-9. doi:  10.3969/j.issn.1007-726X.2009.02.003
    [6] 惠刚盈, 1999. 角尺度——一个描述林木个体分布格局的结构参数[J]. 林业科学, (1): 39-44. doi:  10.3321/j.issn:1001-7488.1999.01.006
    [7] 惠刚盈, Klausvon G, Matthias A, 1999. 一个新的林分空间结构参数——大小比数[J]. 林业科学研究, (1): 4-9. doi:  10.3321/j.issn:1001-1498.1999.01.001
    [8] 惠刚盈, 胡艳波, 2001. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, (1): 23-27. doi:  10.3321/j.issn:1001-1498.2001.01.004
    [9] 胡艳波, 惠刚盈, 2015. 基于相邻木关系的林木密集程度表达方式研究[J]. 北京林业大学学报, 37(9): 1-8. doi:  10.13332/j.1000--1522.20150125
    [10] 何静, 李新建, 朱晋梅, 等, 2022. 基于最粗优势木胸径生长的湖南栎类天然林立地质量评价模型[J]. 林业科学, 58(8): 89-98. doi:  10.11707/j.1001-7488.20220809
    [11] 何静, 2022. 基于混合效应的湖南栎类天然林单木生长模型[D]. 长沙: 中南林业科技大学.
    [12] 李春明, 2011. 基于纵向数据非线性混合模型的杉木林优势木平均高研究[J]. 林业科学研究, 24(1): 68-73. doi:  10.13275/j.cnki.lykxyj.2011.01.014
    [13] 李健, 彭鹏, 何怀江, 等, 2017. 采伐对吉林蛟河针阔混交林空间结构的影响[J]. 北京林业大学学报, 39(9): 48-57. doi:  10.13332/j.1000-1522.20170220
    [14] 林富成, 王维芳, 门秀莉, 等, 2021. 兴安落叶松人工林空间结构优化[J]. 北京林业大学学报, 43(4): 68-76. doi:  10.12171/j.1000-1522.20200228
    [15] 林文树, 穆丹, 王丽平, 等, 2016. 针阔混交林不同演替阶段表层土壤理化性质与优势林木生长的相关性[J]. 林业科学, 52(5): 17-25. doi:  10.11707/j.1001-7488.20160503
    [16] 刘国英, 1983. 影响落叶松中龄林优势木生长的因素[J]. 河北农学报, 8(3): 65-66+64. doi:  10.13275/j.cnki.lykxyj.2022.01.001
    [17] 刘家霖, 满秀玲, 胡悦, 2016. 兴安落叶松天然林不同分化等级林木树干液流对综合环境因子的响应[J]. 林业科学研究, 29(5): 726-734. doi:  10.3969/j.issn.1001-1498.2016.05.015
    [18] 刘帅, 张江, 李建军, 等, 2017. 森林空间结构分析中基于Voronoi图的样地边缘校正[J]. 林业科学, 53(1): 28-37. doi:  10.11707/j.1001-7488.20170104
    [19] 娄明华, 杨同辉, 王卫兵, 等, 2023. 四明山黄山松针阔混交林林分空间结构参数多元分布特征[J]. 林业与环境科学, 39(4): 12-20. doi:  10.3969/j.issn.1006-4427.2023.04.002
    [20] 鲁绍伟, 曹云生, 李福双, 等, 2012. 冀西北山区华北落叶松人工林材积与生物量研究[J]. 林业资源管理, (1): 33-36. doi:  10.3969/j.issn.1002-6622.2012.01.007
    [21] 陆元昌, 雷相东, 洪玲霞, 等, 2010. 近自然森林经理计划技术体系研究[J]. 西南林学院学报, 30(1): 1-5. doi:  10.3969/j.issn.2095-1914.2010.01.001
    [22] 孟宪宇, 2011. 测树学 [M]. 北京: 中国林业出版社, 125-160.
    [23] 梅婷婷, 王传宽, 赵平, 等, 2010. 木荷树干液流的密度特征[J]. 林业科学, 46(1): 40-47. doi:  10.11707/j.1001-7488.20100107
    [24] 沈国舫, 2001. 森林培育学[M]. 北京: 中国林业出版社.
    [25] 单凯丽, 2020. 基于气候变化下的杉木人工林优势木单木生长模型研究[D]. 南昌: 江西农业大学.
    [26] 宋语涵, 张晨, 蔡体久, 等, 2021. 基于Voronoi图的阔叶红松林空间结构特征分析[J]. 北京林业大学学报, 43(1): 20-26. doi:  10.12171/j.1000-1522.20200056
    [27] 汤孟平, 徐文兵, 陈永刚, 等, 2011. 天目山近自然毛竹林空间结构与生物量的关系[J]. 林业科学, 47(8): 1-6. doi:  10.11707/j.1001-7488.20110801
    [28] 唐继新, 贾宏炎, 王科, 等, 2019. 密度调控对米老排中龄人工林生长的影响[J]. 南京林业大学学报, 43(1): 45-53. doi:  10.3969/j.issn.1000-2006.201805024
    [29] 王璞, 马履一, 段劼, 等, 2013. 华北落叶松林平均木—优势木树高模型的研究[J]. 安徽农业科学, 41(21): 8963-8964. doi:  10.3969/j.issn.0517-6611.2013.21.058
    [30] 汪清, 2021. 马尾松木荷不同比例混交林空间结构特征及其对林分生长的影响[D]. 南昌: 江西农业大学.
    [31] 项小燕, 吴甘霖, 段仁燕, 等, 2015. 大别山五针松种内和种间竞争强度[J]. 生态学报, 35(2): 389-395. doi:  10.5846/stxb201401130102
    [32] 谢伊, 杨华, 2022. 长白山天然云冷杉针阔混交林主要树种胸径生长与林分空间结构的关系[J]. 北京林业大学学报, 44(9): 1-11. doi:  10.12171/j.1000−1522.20210280
    [33] 徐罗, 亢新刚, 郭韦韦, 等, 2016. 天然云冷杉针阔混交林立地质量评价[J]. 北京林业大学学报, 38(5): 11-12. doi:  10.13332/j.1000-1522.20140126
    [34] 徐卫, 2022. 吉林蛟河针阔混交林内邻域竞争对典型树木生长的影响[D]. 北京: 北京林业大学.
    [35] 玉宝, 王立明, 2007. 兴安落叶松天然林分级木生长特性分析[J]. 林业科学研究, 20(4): 452-457. doi:  10.3321/j.issn:1001-1498.2007.04.002
    [36] 岳永杰, 余新晓, 刘彦, 等, 2008. 华北落叶松林不同发育阶段种群分布格局研究[J]. 北京林业大学学报, 30(S2): 171-176. doi:  10.13332/j.1000−1522.2008.s2.038
    [37] 张震, 刘萍, 丁易, 等, 2010. 天山云杉林不同发育阶段种群分布格局研究[J]. 北京林业大学学报, 32(3): 75-79. doi:  10.13332/j.1000-1522.2010.03.020
    [38] 张岗岗, 王得祥, 柴宗政, 等, 2014. 秦岭中段华北落叶松人工林空间结构的二元分布特征[J]. 西北农林科技大学学报, 42(9): 33-40. doi:  10.13207/j.cnki.jnwafu.2014.09.014
    [39] 张彩彩, 李际平, 曹小玉, 等, 2015. 基于加权Voronoi图的杉木生态公益林空间结构分析[J]. 中南林业科技大学学报, 35(4): 19-26. doi:  10.14067/j.cnki.1673-923x.2015.04.004
    [40] 张咪, 2019. 黄土高原残塬沟壑区刺槐人工林稳定性及优势木分布特征研究[D]. 杨凌: 西北农林科技大学.
    [41] 张毅锋, 2022. 天目山常绿阔叶林空间结构对林木生长量的影响研究[D]. 杭州: 浙江农林大学.
    [42] 赵春燕, 李际平, 李建军, 2010. 基于Voronoi图和Delaunay三角网的林分空间结构量化分析[J]. 林业科学, 46(6): 78-84. doi:  10.11707/j.1001-7488.20100612
    [43] 赵中华, 惠刚盈, 胡艳波, 等, 2014. 基于大小比数的林分空间优势度表达方法及其应用[J]. 北京林业大学学报, 36(1): 78-82.
    [44] 周超凡, 2023. 云冷杉阔叶混交林空间结构与生长量的定量解析[D]. 北京: 中国林业科学研究院.
    [45] Aussenac R, Bergeron Y, Gravel D, et al, 2019. Interactions among trees: a key element in the stabilising effect of species diversity on forest growth[J]. Functional Ecology, 33(2): 360-367. doi:  10.1111/1365-2435.13257
    [46] Baskent E Z, Keles S, 2005. Spatial forest lanning: a review[J]. Ecological Modelling, 188(2/4): 145-173. doi:  10.1016/j.ecolmodel.2005.01.059
    [47] Fang Z, Bailey R L, 2001. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments[J]. Forest science, 47(3): 287-300. doi:  10.1093/forestscience/47.3.287
    [48] Lang A C, Härdtle W, Bruelheide H, et al, 2010. Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China[J]. Forest Ecology and Management, 260(10): 1708-1715. doi:  10.1016/j.foreco.2010.08.015
    [49] Pretzsch H, 2020. The course of tree growth. Theory and reality[J]. Forest Ecology and Management, 478: 118508. doi:  10.1016/j.foreco.2020.118508
    [50] Vallet P, Perot T, 2016. Tree diversity effect on dominant height in temperate forest[J]. Forest Ecology and Management, 381: 106-114. doi:  10.1016/j.foreco.2016.09.024
    [51] Weiner J, Damgaard C, 2006. Size-asymmetric competition and size-asymmetric growth in a spatially explicit zone-of-influence model of plant competition[J]. Ecological Research, 21(5): 707-712. doi:  10.1007/s11284-006-0178-6
    [52] Zhao H Y, Kang X G, Guo Z Q, et al, 2012. Species interactions in spruce-fir mixed stands and implications for enrichment planting in the Changbai Mountains, China[J]. Mountain Research and Development, 32(2): 187-196. doi:  10.1659/MRD-JOURNAL-D-11-00125.1
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  72
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-22
  • 录用日期:  2024-02-23
  • 网络出版日期:  2024-04-11
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回