留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷击火发生预报的研究进展

彭玉娴 田晓瑞 李思薇 司莉青 王明玉

彭玉娴, 田晓瑞, 李思薇, 司莉青, 王明玉. 雷击火发生预报的研究进展[J]. 陆地生态系统与保护学报. doi: 10.12356/j.2096-8884.2024-0015
引用本文: 彭玉娴, 田晓瑞, 李思薇, 司莉青, 王明玉. 雷击火发生预报的研究进展[J]. 陆地生态系统与保护学报. doi: 10.12356/j.2096-8884.2024-0015
Yuxian Peng, Xiaorui Tian, Siwei Li, Liqing Si, Mingyu Wang. A Review of Recent Advances in Lightning Fire Prediction[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0015
Citation: Yuxian Peng, Xiaorui Tian, Siwei Li, Liqing Si, Mingyu Wang. A Review of Recent Advances in Lightning Fire Prediction[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0015

雷击火发生预报的研究进展

doi: 10.12356/j.2096-8884.2024-0015
基金项目: 国家重点研发计划资助(2023YFC3006803)
详细信息
    作者简介:

    彭玉娴:E-mail:284587487@qq.com

    通讯作者:

    E-mail:tianxr@caf.ac.cn

  • 中图分类号: S718.5

A Review of Recent Advances in Lightning Fire Prediction

  • 摘要: 雷击火是最主要的自然火,也是全球植被过火面积的主要形成因子。闪电成因比较复杂,因此很难准确预测闪电和雷击火发生。随着对闪电监测能力的提高,雷击火发生预报在林火管理中逐渐得到应用。雷击火发生预报一般采用统计回归模型或机器学习方法,包括逻辑回归模型、随机森林模型、广义线性模型等。本文从雷击火的驱动因子、闪电特征和预报方法3个方面总结相关研究进展,重点综述雷击火的驱动因子和发生预报方法。结合当前雷击火预报技术中存在的问题,总结了未来的研究方向。今后需要针对不同生态区的可燃物特征和雷击火发生特点,发展满足不同管理需求的雷击火发生预测模型,提高雷击火发生的预测能力。
  • [1] 郭福涛, 胡海清, 马志海, 等, 2010. 不同模型对拟合大兴安岭林火发生与气象因素关系的适用性[J]. 应用生态学报, 21(1): 159-164. doi:  10.13287/j.1001-9332.2010.0073
    [2] 郭福涛, 苏漳文, 马祥庆, 等, 2015. 大兴安岭塔河地区雷击火发生驱动因子综合分析[J]. 生态学报, 35(19): 6439-6448. doi:  10.5846/stxb201402140257
    [3] 梁慧玲, 郭福涛, 苏漳文, 等, 2015. 基于随机森林算法的福建省林火发生主要气象因子分析[J]. 火灾科学, 24(4): 191-200. doi:  10.3969/j.issn.1004-5309.2015.04.02
    [4] 梁慧玲, 林玉蕊, 杨光, 等, 2016. 基于气象因子的随机森林算法在塔河地区林火预测中的应用[J]. 林业科学, 52(1): 89-98. doi:  10.11707/j.1001-7488.20160111
    [5] 舒立福, 王明玉, 田晓瑞, 等, 2003. 我国大兴安岭呼中林区雷击火发生火环境研究[J]. 林业科学, 2003(6): 94-99. doi:  10.3321/j.issn:1001-7488.2003.06.016
    [6] 孙瑜, 史明昌, 彭欢, 等, 2014. 基于 MaxEnt 模型的黑龙江大兴安岭森林雷击火火险预测[J]. 应用生态学报, 25(4): 1100-1106. doi:  10.13287/J.1001-9332.2014.0086
    [7] 田晓瑞, 舒立福, 赵凤君, 等, 2012. 大兴安岭雷击火发生条件分析[J]. 林业科学, 48(7): 98-103. doi:  10.11707/j.1001-7488.20120716
    [8] 王会福, 龚立群, 2013. 秦岭林区雷击火的发生和预防[J]. 陕西林业科技, 2013(5): 69-70+72. doi:  10.3969/j.issn.1001-2117.2013.05.020
    [9] 王金荣, 史明昌, 姜恩来, 等, 2015. 基于 GIS 的黑龙江大兴安岭森林雷击火发生概率预测模型[J]. 安徽农业大学学报, 42(5): 769-774. doi:  10.136100.cnki.i672-352x.20150825.022
    [10] 张珍, 朱贺, 王光玉, 等, 2022. 混合效应模型在林火发生预测中的适用性[J]. 应用生态学报, 33(6): 1547-1554. doi:  10.13287/j.1001-9332.202206.026
    [11] Anderson K, 2002. A model to predict lightning-caused fire occurrences[J]. International journal of wild-land fire, 11(4): 163-172. doi:  10.1071/WF02001
    [12] Bond-Lamberty B, Peckham S D, Ahl D E, et al, 2007. Fire as the dominant driver of central Canadian boreal forest carbon balance[J]. Nature, 450(7166): 89-92. doi:  10.1038/nature06272
    [13] Butler B W, Finney M, Bradshaw L, et al, 2006. WindWizard: a new tool for fire management decision support[C]//Andrews P L, Butler B W. Fuels management-How to measure success, Portland, Oregon, USA. RMRS-P-41, Ogden, UT: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 787-796.
    [14] Canadell J G, Meyer C P, Cook G D, et al, 2021. Multidecadal increase of forest burned area in Australia is linked to climate change[J]. Nature communications, 12(1): 6921. doi:  10.1038/s41467-021-27225-4
    [15] Chen F, Du Y, Niu S, et al, 2015. Modeling forest lightning fire occurrence in the Daxinganling Mountains of Northeastern China with Maxent[J]. Forests, 6(5): 1422-1438. doi:  10.3390/f6051422
    [16] Costafreda-Aumedes S, Comas C, Vega-Garcia C, 2017. Human-caused fire occurrence modelling in perspective: a review[J]. International Journal of Wild-land Fire, 26(12): 983-998. DOI:  https://doi.org/10.1071/WF17026.
    [17] Di Giuseppe F, 2022. The value of probabilistic prediction for lightning ignited fires[J]. Geophysical Research Letters, 49(17): e2022GL099669. doi:  10.1029/2022GL099669
    [18] Dissing D, Verbyla D L, 2003. Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation[J]. Canadian Journal of Forest Research, 33(5): 770-782. doi:  10.1139/X02-214
    [19] Drohan J, 2012. Predicting Dry Lightning Risk Nationwide[J]. JFSP Briefs, 2012: 139.
    [20] Flannigan M D, Wotton B M, 1991. Lightning-ignited forest fires in northwestern Ontario[J]. Canadian Journal of Forest Research, 21(3): 277-287. doi:  10.1139/x91-035
    [21] Flannigan M, Stocks B, Turetsky M, et al, 2009. Impacts of climate change on fire activity and fire management in the circumboreal forest[J]. Global change biology, 15(3): 549-560. doi:  10.1111/j.1365-2486.2008.01660.x
    [22] Fuquay D M, Taylor A R, Hawe R G, et al, 1972. Lightning discharges that caused fires[J]. Journal of Geophysical Research, 77(12): 2156-2158. doi:  10.1029/jz072i024p06371
    [23] Fuquay D M, 1979. A model for predicting lightning fire ignition in wild-land fuels[M]. Inter mountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture.
    [24] Gijben M, 2016. A lightning threat index for South Africa using numerical weather prediction data[D]. Pretoria: University of Pretoria.
    [25] Guo F, Wang G, Innes J L, et al, 2016. Comparison of six generalized linear models for occurrence of lightning-induced fires in northern Daxing’an Mountains, China[J]. Journal of Forestry Research, 27: 379-388. doi:  10.1007/s11676-015-0176-z
    [26] Hessilt T D, Abatzoglou J T, Chen Y, et al, 2022. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America[J]. Environmental Research Letters, 17(5): 054008. doi:  10.1088/1748-9326/ac6311
    [27] Hu T, Zhou G, 2014. Drivers of lightning and human-caused fire regimes in the Great Xing’an Mountains[J]. Forest Ecology and Management, 329: 49-58. doi:  10.1016/j.foreco.2014.05.047
    [28] Jain P, Coogan S C P, Subramanian S G, et al, 2020. A review of machine learning applications in wildfire science and management[J]. Environmental Reviews, 28(4): 478-505. doi:  10.1139/er-2020-0019
    [29] Kourtz P, 1967. Lightning behaviour and lightning fires in Canadian forests[J]. Forestry Branch, 1967: 33.
    [30] Larjavaara M, Pennanen J, Tuomi T J, 2005. Lightning that ignites forest fires in Finland[J]. Agricultural and Forest Meteorology, 132(3/4): 171-180. doi:  10.1016/j.agrformet.2005.07.005
    [31] Latham D J, 1989. Ignition probabilities of wild-land fuels based on simulated lightning discharges[M]. US Department of Agriculture, Forest Service, Intermountain Research Station.
    [32] Mahaney W C, Milner M W, 2011. Lightning-induced mineral/chemical changes in red pine (Pinus resinosa) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 309(3/4): 367-373. DOI: 10.1016/j.palaeo.2011.07.006.
    [33] McGuiney E, Shulski M, Wendler G, 2005[2024-03-01]. Alaska lightning climatology and application to wildfire science[C/OL]//Proceedings of the 85th American Meteorological Society Annual Meeting, San Diego Proceedings of Conference on Meteorological Applications of Lightning Data, San Diego, CA, USA. http://ams.confex.com/ams/pdfpapers/85059.pdf.
    [34] Milanović S, Marković N, Pamučar D, et al, 2020. Forest fire probability map in eastern Serbia: logistic regression versus random forest method[J]. Forests, 12(1): 5. doi:  10.3390/f12010005
    [35] Mostajabi A, Finney D L, Rubinstein M, et al, 2019. Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques[J]. Climate and Atmospheric Science, 2(1): 41. doi:  10.1038/s41612-019-0098-0
    [36] Müller M M, Vacik H, Diendorfer G, et al, 2013. Analysis of lightning-induced forest fires in Austria[J]. Theoretical and Applied Climatology, 111: 183-193. doi:  10.1007/s00704-012-0653-7
    [37] Müller M M, Vacik H, 2017. Characteristics of lightnings igniting forest fires in Austria[J]. Agricultural and Forest Meteorology, 240: 26-34. doi:  10.1071/WF02001
    [38] Nadeem K, Taylor S W, Woolford D G, et al, 2019. Mesoscale spatiotemporal predictive models of daily human-and lightning-caused wildland fire occurrence in British Columbia[J]. International Journal of Wild-land Fire, 29(1): 11-27. doi:  10.1071/WF19058
    [39] Nieto H, Aguado I, García M, et al, 2012. Lightning-caused fires in Central Spain: Development of a probability model of occurrence for two Spanish regions[J]. Agricultural and Forest Meteorology, 162: 35-43. doi:  10.1016/j.agrformet.2012.04.002
    [40] Ordóñez C, Saavedra A, Rodríguez-Pérez J R, et al, 2012. Using model-based geostatistics to predict lightning-caused wildfires[J]. Environmental Modelling & Software, 29(1): 44-50. doi:  10.1016/j.envsoft.2011.10.004
    [41] Petrie M D, Savage N P, Stephen H, 2022. High and low air temperatures and natural wildfire ignitions in the Sierra Nevada Region[J]. Environments, 9(8): 96. doi:  10.3390/environments9080096
    [42] Phelps N, Woolford D G, 2021. Comparing calibrated statistical and machine learning methods for wild-land fire occurrence prediction: a case study of human-caused fires in Lac La Biche, Alberta, Canada[J]. International Journal of Wild-land Fire, 30(11): 850-870. doi:  10.1071/WF20139
    [43] Pineda N, Montanyà J, Vander Velde O A, 2014. Characteristics of lightning related to wildfire ignitions in Catalonia[J]. Atmospheric Research, 135: 380-387. doi:  10.1016/j.atmosres.2012.07.011
    [44] Pineda N, Rigo T, 2017. The rainfall factor in lightning-ignited wildfires in Catalonia[J]. Agricultural and Forest Meteorology, 239: 249-263. doi:  10.1016/j.agrformet.2017.03.016
    [45] Preeti T, Kanakaraddi S, Beelagi A, et al, 2021. Forest fire prediction using machine learning techniques[C]. International Conference on Intelligent Technologies (CONIT). IEEE, 1-6.
    [46] Read N, Duff T J, Taylor P G, 2018. A lightning-caused wildfire ignition forecasting model for operational use[J]. Agricultural and Forest Meteorology, 253: 233-246. doi:  10.1016/j.agrformet.2018.01.037
    [47] Reeve N, Toumi R, 1999. Lightning activity as an indicator of climate change[J]. Quarterly Journal of the Royal Meteorological Society, 125(555): 893-903. doi:  10.1002/qj.49712555507
    [48] Rorig M L, McKay S J, Ferguson S A, et al, 2007. Model-generated predictions of dry thunderstorm potential[J]. Journal of Applied Meteorology and Climatology, 46(5): 605-614. doi:  10.1175/JAM2482.1
    [49] Schumacher V, Setzer A, Saba M M F, et al, 2022. Characteristics of lightning-caused wildfires in central Brazil in relation to cloud-ground and dry lightning[J]. Agricultural and Forest Meteorology, 312: 108723. doi:  10.1016/j.agrformet.2021.108723
    [50] Sevinc V, Kucuk O, Goltas M, 2020. A Bayesian network model for prediction and analysis of possible forest fire causes[J]. Forest Ecology and Management, 457: 117723. doi:  10.1016/j.foreco.2019.117723
    [51] Taylor A R, 1969. Tree-bole ignition in superimposed lightning scars[M]. US Department of Agriculture, Forest Service, Intermountain Forest & Range Experiment Station.
    [52] Wendler G, Conner J, Moore B, et al, 2011. Climatology of Alaskan wildfires with special emphasis on the extreme year of 2004[J]. Theoretical and Applied Climatology, 104: 459-472. doi:  10.1007/s00704-010-0357-9
    [53] Woolford D G, Dean C B, Martell D L, et al, 2014. Lightning-caused forest fire risk in Northwestern Ontario, Canada, is increasing and associated with anomalies in fire weather[J]. Environmetrics, 25(6): 406-416. doi:  10.1002/env.2278
    [54] Wotton B M, Martell D L, 2005. A lightning fire occurrence model for Ontario[J]. Canadian Journal of Forest Research, 35(6): 1389-1401. doi:  10.1139/x05-071
    [55] Wu Z, He H S, Yang J, et al, 2014. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China[J]. Science of the Total Environment, 493: 472-480. doi:  10.1016/j.scitotenv.2014.06.011
    [56] Yusop N, Ahmad M R, Abdullah M, et al, 2019. Cloud to ground lightning observations over the Western Antarctic region[J]. Polar Science, 20: 84-91. doi:  10.1016/j.polar.2019.05.002
    [57] Zhang H, Qiao Y, Chen H, et al, 2021. Experimental study on flaming ignition of pine needles by simulated lightning discharge[J]. Fire Safety Journal, 120: 103029. doi:  10.1016/j.firesaf.2020.103029
  • 加载中
计量
  • 文章访问数:  20
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-01
  • 录用日期:  2024-04-30

目录

    /

    返回文章
    返回