留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热带常绿阔叶林冠层光合作用光响应特征

牛晓栋 庞勇 徐海龙 余涛

牛晓栋, 庞勇, 徐海龙, 余涛. 热带常绿阔叶林冠层光合作用光响应特征[J]. 陆地生态系统与保护学报. doi: 10.12356/j.2096-8884.2024-0016
引用本文: 牛晓栋, 庞勇, 徐海龙, 余涛. 热带常绿阔叶林冠层光合作用光响应特征[J]. 陆地生态系统与保护学报. doi: 10.12356/j.2096-8884.2024-0016
Xiaodong Niu, Yong Pang, Hailong Xu, Tao Yu. Light Response Characteristics of Canopy Photosynthesis of a Tropical Evergreen Broadleaf Forest[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0016
Citation: Xiaodong Niu, Yong Pang, Hailong Xu, Tao Yu. Light Response Characteristics of Canopy Photosynthesis of a Tropical Evergreen Broadleaf Forest[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0016

热带常绿阔叶林冠层光合作用光响应特征

doi: 10.12356/j.2096-8884.2024-0016
基金项目: 高分辨率对地观测系统重大专项项目(30-Y30A02-9001-20/22-7)
详细信息
    作者简介:

    牛晓栋:E-mail:764854761@qq.com

    通讯作者:

    E-mail:pangy@ifrit.ac.cn

  • 中图分类号: S718.55

Light Response Characteristics of Canopy Photosynthesis of a Tropical Evergreen Broadleaf Forest

  • 摘要:   目的  研究云南省典型热带常绿阔叶林的冠层光合作用光响应特征。  方法  基于云南省景洪市普文热带常绿阔叶林通量塔从2023年3月至2024年2月的观测数据,利用Michaelis-Menten方程,以1个月为时间窗口,拟合生态系统光合作用的3个光响应特征参数(以下简称“光合参数”),并与相应时间尺度的环境因子平均值进行相关分析。  结果  热带常绿阔叶林的表观初始光能利用效率(Apparent initial light use efficiency, ɑ)和生态系统暗呼吸速率(Dark ecosystem respiration, Rd)有相似的季节变异特征,均在10月份达到最大值,2月份为最小值;最大光合速率(Maximum photosynthesis rate, Pmax)在3至5月较低,其余月份变化不明显。与ɑRdPmax的季节变异相关性最大的环境因子分别是风速、空气相对湿度和饱和水汽压差,冠层导度也对RdPmax的季节变异有一定影响。  结论  热带常绿阔叶林的3个冠层光合参数有明显的季节变异特征,风速和水分条件相比辐射和温度对光合参数的季节变异有更大影响。
  • 图  1  普文热带常绿阔叶林冠层上方大气湍流功率谱和谐谱特征

    注:上排为功率谱,下排为谐谱;sw、sCO2、sH2O、sT分别代表垂直风速、CO2浓度、水汽、气温的功率谱;w’CO2’ 、w’u’、w’H2O’ 、w’T’分别代表CO2浓度、垂直风速与水平风速、水汽、气温的谐谱。The upper row is the power spectrum, and the below row is the co-spectrum; sw, sCO2, sH2O, sT represent the power spectrum of vertical wind velocity, carbon dioxide concentration, water vapor and air temperature, respectively; w’CO2’, w’u’, w’H2O’, w’T’ represent the co-spectrum of carbon dioxide concentration, vertical and horizontal wind velocity, water vapor and air temperature, respectively.

    Figure  1.  Power spectrum and co-spectrum for atmospheric turbulence above forest canopy in a tropical evergreen broadleaf forest in Puwen Town

    图  2  普文热带常绿阔叶林环境和生物因子的逐月变化(平均值±标准差)

    Figure  2.  Monthly variations of environmental and biological factors of a tropical evergreen broadleaf forest in Puwen Town in Yunnan Province (mean values ± standard deviation)

    图  3  白天净生态系统CO2交换量对光合有效辐射的逐月响应

    Figure  3.  Response of net ecosystem CO2 exchange in daytime (NEEd) to photosynthetically active radiation (PAR) in each month

    图  4  表观初始光能利用效率(ɑ)、最大光合速率(Pmax)和生态系统暗呼吸(Rd)的逐月变化

    Figure  4.  Monthly variation of apparent initial light use efficiency (ɑ), maximum photosynthesis rate (Pmax) and dark ecosystem respiration (Rd)

    图  5  光合参数与环境/生物因子的线性回归

    Figure  5.  Correlation between ecosystem photosynthetic parameters and environmental/biological factors

  • [1] 费学海, 2018. 云南典型森林生态系统碳交换及其对气候变化响应研究[D]. 北京: 中国科学院大学.
    [2] 景跃波, 2015. 云南热区西南桦人工林丛枝菌根研究[D]. 昆明: 云南大学.
    [3] 林雍, 陈智, 杨萌, 等, 2022. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 46(12): 1461-1472. doi:  10.17521/cjpe.2021.0426
    [4] 朴世龙, 何悦, 王旭辉, 等, 2022. 中国陆地生态系统碳汇估算: 方法、进展、展望[J]. 中国科学(地球科学), 52(6): 1010-1020. doi:  10.1360/SSTe-2021-0197
    [5] 起德花, 费学海, 宋清海, 等, 2021. 2009–2013年哀牢山亚热带常绿阔叶林碳水通量观测数据集[J/OL]. 中国科学数据, 6(1): 87-97. http://www.dx. doi.org/10.11922/sciencedb.00186. DOI:  10.11922/csdata.2020.0089.zh.
    [6] 宋清海, 张一平, 谭正洪, 等, 2010. 热带季节雨林生态系统净光合作用特征及其影响因子[J]. 应用生态学报, 21(12): 3007-3014. doi:  10.13287/j.1001-9332.2010.0463
    [7] 肖文发, 朱建华, 曾立雄, 等, 2023. 森林碳汇助力碳中和的几点认识[J]. 林业科学, 59(3): 1-11. doi:  10.11707/j.1001-7488.LYKX20220681
    [8] 许丽霞, 江洪, 张敏霞, 等, 2017. 安吉毛竹林生态系统光合作用特征及其环境影响因子研究[J]. 江西农业大学学报, 39(5): 928-937. doi:  10.13836/j.jjau.2017120
    [9] 万家鸣, 律江, 石云, 等, 2023. 散射辐射对杨树人工林生态系统总初级生产力的影响[J]. 林业科学, 59(5): 1-10. doi:  10.11707/j.1001-7488.LYKX20230249
    [10] 周立国, 宋清海, 张一平, 等, 2017. 4种森林生态系统光合作用光响应参数特征的比较[J]. 生态学杂志, 36(7): 1815-1824. doi:  10.13292/j.1000-4890.201707.038
    [11] 朱苑, 刘帆, 王传宽, 等, 2020. 帽儿山温带落叶阔叶林净生态系统碳交换的日变化及光响应特征[J]. 应用生态学报, 31(1): 72-82. doi:  10.13287/j.1001-9332.202001.040
    [12] Bao X Y, Li Z G, Xie F T, 2019. Environmental influences on light response parameters of net carbon exchange in two rotation croplands on the North China Plain[J]. Scientific Reports, 9(1): 18702. doi:  10.1038/s41598-019-55340-2
    [13] Chen S N, Wei W, Huang Y, 2024. Biophysical controls on canopy transpiration of Pinus tabulaeformis under different soil moisture conditions in the Loess Plateau of China[J]. Journal of Hydrology, 631: 130799. doi:  10.1016/j.jhydrol.2024.130799
    [14] Chen W N, Wang S, Wang J S, et al, 2023. Evidence for widespread thermal optimality of ecosystem respiration[J]. Nature Ecology & Evolution, 7(9): 1379-1387. doi:  10.1038/s41559-023-02121-w
    [15] Falge E, Baldocchi D, Olson R, et al, 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange[J]. Agricultural and Forest Meteorology, 107(1): 43-69. doi:  10.1016/S0168-1923(00)00225-2
    [16] Foken T, Göockede M, Mauder M, et al, 2006. Post-field data quality control[M]//Handbook of Micrometeorology. Dordrecht: Kluwer Academic Publishers, 181-208. DOI:  10.1007/1-4020-2265-4_9
    [17] Gilmanov T G, Aires L, Barcza Z, et al, 2020. Productivity, respiration, and light response parameters of world grassland and agroecosystems derived from flux tower measurements[J]. Rangeland Ecology & Management, 63(1): 16-39. doi:  10.2111/REM-D-09-00072.1
    [18] Kaimal J C, Wyngaard J C, Izumi Y, et al, 1972. Spectral characteristics of surface layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 98: 563-589. doi:  10.1002/qj.49709841707
    [19] Lin Y, Chen Z, Yu G R, et al, 2024. Spatial patterns of light response parameters and their regulation on gross primary productivity in China[J]. Agricultural and Forest Meteorology, 345: 109833. doi:  10.1016/j.agrformet.2023.109833
    [20] Niu X D, Chen Z C, Pang Y, 2023. Soil moisture shapes the environmental control mechanism on canopy conductance in a natural oak forest[J]. Science of the Total Environment, 857(1): 159363. doi:  10.1016/j.scitotenv.2022.159363
    [21] Reichstein M, Falge E, Baldocchi D, et al, 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm[J]. Global Change Biology, 11(9): 1424-1439. doi:  10.1111/j.1365-2486.2005.001002.x
    [22] Song Q H, Fei X H, Zhang Y P, et al, 2017. Snow damage strongly reduces the strength of the carbon sink in a primary subtropical evergreen broadleaved forest[J]. Environmental Research Letters, 12(10): 104014. doi:  10.1088/1748-9326/aa82c4
    [23] Song X Z, Chen X F, Zhou G M, 2017. Observed high and persistent carbon uptake by Moso bamboo forests and its response to environmental drivers[J]. Agricultural and Forest Meteorology, 247: 467-475. doi:  10.1016/j.agrformet.2017.09.001
    [24] Tanner C B, Thurtell G W, 1969. Anemoclinometer measurements of Reynolds stress and heat transport in the atmospheric surface layer[D]. Madison: University of Wisconsin.
    [25] Tan Z H, Zhang Y P, Schaefer D, et al, 2011. An old-growth subtropical Asian evergreen forest as a large carbon sink[J]. Atmospheric Environment, 45(8): 1548-1554. doi:  10.1016/j.atmosenv.2010.12.041
    [26] Wang B, Wang Z H, Wang C Z, 2021. Field evidence reveals conservative water use of poplar saplings under high aerosol conditions[J]. The Journal of Ecology, 109(5): 2190-2202. doi:  10.1111/1365-2745.13633
    [27] Wang J, Feng L, Palmer P, et al, 2020. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 586(7831): 720-723. doi:  10.1038/s41586-020-2849-9
    [28] Wang Z H, Wang C Z, Wang X, et al, 2022. Aerosol pollution alters the diurnal dynamics of sun and shade leaf photosynthesis through different mechanisms[J]. Plant, Cell & Environment, 45(10): 2943-2953. DOI:  10.1111/pce.14411
    [29] Xiao X M, Zhang Q Y, Braswell B, et al, 2004. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data[J]. Remote Sensing of Environment, 91(2): 256-270. doi:  10.1016/j.rse.2004.03.010
    [30] Xu X J, Du H Q, Zhou G M, et al, 2016. Eddy covariance analysis of the implications of drought on the carbon fluxes of Moso bamboo forest in southeastern China[J]. Trees, 30(5): 1807-1820. doi:  10.1007/s00468-016-1414-5
    [31] Xu M J, Wang Q Y, Yang F T, et al, 2022. The responses of photosynthetic light response parameters to temperature among different seasons in a coniferous plantation of subtropical China[J]. Ecological Indicators, 145: 109595. doi:  10.1016/j.ecolind.2022.109595
    [32] You C H, Wang Y B, Tan X R, et al, 2022. Seasonal and interannual variations of ecosystem photosynthetic characteristics in a semi-arid grassland of Northern China[J]. Journal of Plant Ecology, 15(5): 961-976. doi:  10.1093/jpe/rtac065
    [33] Zhang L M, Yu G R, Sun X M, et al, 2006. Seasonal variations of ecosystem apparent quantum yield (α) and maximum photosynthesis rate (Pmax) of different forest ecosystems in China[J]. Agricultural and Forest Meteorology, 137(3/4): 176-187. doi:  10.1016/j.agrformet.2006.02.006
    [34] Zhang P, Chen S P, Zhang W L, et al, 2012. Biophysical regulations of NEE light response in a steppe and a cropland in Inner Mongolia[J]. Journal of Plant Ecology, 5(2): 238-248. doi:  10.1093/jpe/rtr017
    [35] Zhang Y P, Tan Z H, Song Q H, et al, 2010. Respiration controls the unexpected seasonal pattern of carbon flux in an Asian tropical rain forest[J]. Atmospheric Environment, 44(32): 3886-3893. doi:  10.1016/j.atmosenv.2010.07.027
  • 加载中
图(5)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-02
  • 录用日期:  2024-04-23

目录

    /

    返回文章
    返回