Turn off MathJax
Article Contents
Haijun Zuo, Qing Xu, Deqiang Gao, Beibei Zhang, Wenbin Xu. Advances on the Water Cycle Process of Eucalyptus Plantation Based on Carbon, Hydrogen and Oxygen Isotopes[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2023-0050
Citation: Haijun Zuo, Qing Xu, Deqiang Gao, Beibei Zhang, Wenbin Xu. Advances on the Water Cycle Process of Eucalyptus Plantation Based on Carbon, Hydrogen and Oxygen Isotopes[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2023-0050

Advances on the Water Cycle Process of Eucalyptus Plantation Based on Carbon, Hydrogen and Oxygen Isotopes

doi: 10.12356/j.2096-8884.2023-0050
  • Received Date: 2023-08-10
  • Accepted Date: 2024-04-29
  • Eucalyptus, an important tree species for establishing fast-growing timber forest in the southern region of China, plays a crucial role in plantation resource of China. However, the ecological and environmental issues induced by Eucalyptus planting have been attracted more attentions. Especially, it remains controversial in some issues, such as whether Eucalyptus plantation is a "water pump", whether large-scale development of Eucalyptus plantations leads to soil drought and groundwater level decrease. Carbon, hydrogen, and oxygen stable isotopes technology can be used as a more effective and convenient method for quantitatively studying the water cycle process of terrestrial ecosystem. Specifically, this technology can systematically clarify the hydrological process, transformation relationship of various water bodies and plant water use efficiency in Eucalyptus plantation ecosystems. This paper systematically summarized the main research progress on the applications of carbon, hydrogen, and oxygen stable isotopes in water cycle processes (including precipitation, canopy throughfall, surface water, soil water, plant xylem water, groundwater, and evaporated water) and plant water use efficiency in Eucalyptus plantation ecosystems. Furthermore, this paper pointed out the shortcomings of the current researches on water cycle processes in Eucalyptus plantations based on stable isotope and looked forward to its future studies and application prospects. The results can provide a scientific basis for the optimized management of water resources in the Eucalyptus plantations under the context of sustainable management in China.
  • loading
  • [1]
    丁亚丽, 陈洪松, 聂云鹏, 等, 2016. 基于稳定同位素的喀斯特坡地尾巨桉水分利用特征[J]. 应用生态学报, 27(9): 2729-2736. doi:  10.13287/j.1001-9332.201609.029
    [2]
    葛露露, 孟庆权, 林宇, 等, 2018. 滨海沙地不同树种人工林叶片和土壤表层稳定碳氮同位素及水分利用效率研究[J]. 西北植物学报, 38(3): 544-552. doi:  10.7606/j.issn.1000-4025.2018.03.0544
    [3]
    国家林业和草原局, 2021. 中国林草生态综合监测评价报告[M]. 北京: 中国林业出版社.
    [4]
    侯宁宁, 苏晓琳, 杨钙仁, 等, 2019. 桉树造林的土壤物理性质及其水文效应[J]. 水土保持学报, 33(3): 101-107+114. doi:  10.13870/j.cnki.stbcxb.2019.03.016
    [5]
    黄承标, 杨瑶青, 温远光, 等, 2014. 不同更新方式巨尾桉人工林的水土流失规律[J]. 水土保持学报, 28(1): 43-46+52. doi:  10.3969/j.issn.1009-2242.2014.01.008
    [6]
    黄俊, 金平伟, 姜学兵, 2022. 桉树人工林水文效应研究述评[J]. 人民珠江, 43(12): 38-45. doi:  10.3969/j.issn.1001-9235.2022.12.006
    [7]
    兰秀, 刘永贤, 宋同清, 等, 2019. 广西桉树林表层土壤水分时间稳定性分析[J]. 水土保持学报, 33(4): 263-269. doi:  10.13870/j.cnki.stbcxb.2019.04.037
    [8]
    潘松海, 许宇星, 王志超, 2016. 雷州半岛尾巨桉人工林林下穿透雨特征研究[J]. 桉树科技, 33(4): 14-18. doi:  10.3969/j.issn.1674-3172.2016.04.003
    [9]
    秦佳双, 顾大形, 倪隆康, 等, 2022. 桉树液流径向变化及其对整树蒸腾估算的影响[J]. 林业科学研究, 35(6): 170-176. doi:  10.13275/j.cnki.lykxyj.2022.006.019
    [10]
    任世奇, 项东云, 肖文发, 等, 2017a. 南亚热带尾巨桉中龄林水量平衡特征研究[J]. 生态环境学报, 26(10): 1728-1735. doi:  10.16258/j.cnki.1674-5906.2017.10.012
    [11]
    任世奇, 项东云, 肖文发, 等, 2017b. 广西南宁桉树人工林降雨再分配特征[J]. 生态学杂志, 36(6): 1473-1480. doi:  10.13292/j.1000-4890.201706.037
    [12]
    沈芳芳, 樊后保, 吴建平, 等, 2017. 植物叶片水平δ13C与水分利用效率的研究进展[J]. 北京林业大学学报, 39(11): 114-124. doi:  10.13332/j.1000-1522.20170142
    [13]
    时忠杰, 张宁南, 何常清, 等, 2010. 桉树人工林冠层、凋落物及土壤水文生态效应[J]. 生态学报, 30(7): 1932-1939. doi:  CNKI:SUN:STXB.0.2010-07-034.
    [14]
    史芮林, 张庆芬, 李铭, 等, 2022. 植物碳同位素分馏在水分利用效率研究中的应用[J]. 中国农学通报, 38(23): 15-20. doi:  10.11924/j.issn.1000-6850.casb2021-0719
    [15]
    孙聃, 刘素萍, 申卫军, 等, 2018. 南亚热带不同类型人工林的水土保持效应[J]. 中国水土保持科学, 16(1): 72-79. doi:  10.16843/j.sswc.2018.01.009
    [16]
    王纪杰, 张友育, 俞元春, 等, 2012. 不同林龄巨尾桉人工林土壤的水土保持功能[J]. 福建农林大学学报(自然科学版), 41(1): 46-52. doi:  10.3969/j.issn.1671-5470.2012.01.009
    [17]
    王志超, 许宇星, 竹万宽, 等, 2023. 雷州半岛尾巨桉人工林水分利用来源的旱雨季差异[J]. 浙江农林大学学报, 40(3): 550-559. doi:  10.11833/j.issn.2095-0756.20220481
    [18]
    徐大平, 张宁南, 2006. 桉树人工林生态效应研究进展[J]. 广西林业科学, 35(4): 179-187+201. doi:  10.3969/j.issn.1006-1126.2006.04.002
    [19]
    徐广平, 沈育伊, 滕秋梅, 等, 2021. 桉树人工林生态环境效应研究[M]. 南宁: 广西科学技术出版社.
    [20]
    徐庆, 2020. 稳定同位素森林水文[M]. 北京: 中国林业出版社.
    [21]
    徐庆, 张蓓蓓, 高德强, 等, 2023. 稳定同位素马尾松人工林水文[M]. 北京: 中国林业出版社.
    [22]
    张宁南, 2010. 广东桉树人工林耗水量研究[D]. 北京: 中国林业科学研究院. DOI: 10.7666/d.D603197.
    [23]
    赵从举, 吴喆滢, 康慕谊, 等, 2015. 海南西部桉树人工林土壤水分变化特征及其对林龄的响应[J]. 生态学报, 35(6): 1734-1742. doi:  10.5846/stxb201305301229
    [24]
    朱敏捷, 赵从举, 徐文娴, 等, 2017. 尾叶桉树干液流方位差异及其对环境因子的响应[J]. 海南师范大学学报, 30(2): 177-184. doi:  10.12051/j.issn.1674-4942.2017.02.012
    [25]
    Akhter J, Mahmood K, Tasneem M A, et al, 2005. Water-use efficiency and carbon isotope discrimination of Acacia ampliceps and Eucalyptus camaldulensis at different soil moisture regimes under semi-arid conditions[J]. Biologia Plantarum, 49(2): 269-272. doi:  10.1007/s10535-005-0272-6
    [26]
    Arcova F C S, Ranzini Maurício, Cicco V D, 2018. Partitioning of rainfall in experimental plantations of Eucalyptus urophylla and Pinus elliottii[J]. Floresta, 48(3): 383-392. doi:  10.5380/rf.v48i3.55492
    [27]
    Brunel J P, Walker G R, Kennett-smith A K, 1995. Field validation of isotopic procedures for determining sources of water used by plants in a semi-arid environment[J]. Journal of Hydrology, 167(1): 351-368.
    [28]
    Butt S, Ali M, Fazil M, et al, 2010. Seasonal variations in the isotopic composition of leaf and stem water from an arid region of Southeast Asia[J]. Hydrological Sciences Journal, 55(5): 844-848. doi:  10.1080/02626667.2010.487975
    [29]
    Buzacott A J V, Velde Y V D, Keitel C, et al, 2020. Constraining water age dynamics in a south‐eastern Australian catchment using an age‐ranked storage and stable isotope approach[J]. Hydrological Processes, 34(23): 4384-4403. doi:  10.1002/hyp.13880
    [30]
    Christina M, Nouvellon Y, Laclau J P, et al, 2017. Importance of deep water uptake in tropical eucalypt forest[J]. Functional Ecology, 31(2): 509-519. doi:  10.1111/1365-2435.12727
    [31]
    Dansgaard W, 1964. Stable isotopes in precipitation[J]. Tellus, 16(4): 436-468. doi:  10.1111/j.2153-3490.1964.tb00181.x
    [32]
    Dai J, Zhang X, Luo Z, et al, 2020. Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region[J]. Journal of Hydrology, 589: 125199. doi:  10.1016/j.jhydrol.2020.125199
    [33]
    Durand M, Brendel O, Cyril Buré, et al, 2020. Impacts of a partial rainfall exclusion in the field on growth and transpiration: consequences for leaf-level and whole-plant water-use efficiency compared to controlled conditions[J]. Agricultural and Forest Meteorology, 282-283: 107873. doi:  10.1016/j.agrformet.2019.107873
    [34]
    Elghawi R, Pekhazis K, Doummar J, 2021. Multi-regression analysis between stable isotope composition and hydrochemical parameters in karst springs to provide insights into groundwater origin and subsurface processes: regional application to Lebanon[J]. Environmental Earth Sciences, 80(6): 1-21. doi:  10.1007/s12665-021-09519-4
    [35]
    Farquhar G D, O’Leary M H, Berry J A, 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Australian Journal of Plant Physiology, 9(2): 121-137. doi:  10.1071/PP9820121
    [36]
    Feikema P M, Morris J D, Connell L D, 2010. The water balance and water sources of a Eucalyptus plantation over shallow saline groundwater[J]. Plant & Soil, 332(s1/2): 429-449. DOI:http://dx. doi.org/10.1007/s11.
    [37]
    Hervé-Fernández P, Oyarzún C, Brumb C, et al, 2016. Assessing the ‘two water worlds’ hypothesis and water sources for native and exotic evergreen species in south-central Chile[J]. Hydrological Processes, 30(23): 4227-4241. doi:  10.1002/hyp.10984
    [38]
    Jaleta D, Mbilinyi Boniface P, Mahoo Henry F, et al, 2017. Effect of Eucalyptus expansion on surface runoff in the central highlands of Ethiopia[J]. Ecological Processes, 6(1): 2192-1709. doi:  10.1186/s13717-017-0071-y
    [39]
    Jones C, Stanton D, Hamer N, et al, 2020. Field investigation of potential terrestrial groundwater-dependent ecosystems within Australia's Great Artesian Basin[J]. Hydrogeology Journal, 28(1): 237-261. doi:  10.1007/s10040-019-02081-1
    [40]
    Kato H, Onda Y, Nanko K, et al, 2013. Effect of canopy interception on spatial variability and isotopic composition of throughfall in Japanese cypress plantations[J]. Journal of Hydrology, 504(10): 1-11. doi:  10.1016/j.jhydrol.2013.09.028
    [41]
    Kwicklis E, Farnham I, Hershey R L, et al, 2021. Understanding long-term groundwater flow at Pahute Mesa and vicinity, Nevada National Security Site, USA, from naturally occurring geochemical and isotopic tracers[J]. Hydrogeology Journal, 29(8): 2725-2749. doi:  10.1007/S10040-021-02397-X
    [42]
    Lamoureux Sebastian C, Poot Pieter, Veneklaas Erik J, 2018. Shallow soils negatively affect water relations and photosynthesis in two semi-arid Eucalyptus species[J]. Environmental and Experimental Botany, 155: 239-250. doi:  10.1016/j.envexpbot.2018.06.037
    [43]
    Otto M S G, Vergani A R, Goncalves A N, et al, 2016. Impact of water supply on stomatal conductance, light use efficiency and growth of tropical Eucalyptus plantation in Brazil[J]. Revista Ecologia e Nutriç ã o Florestal-ENFLO, 4(3): 87-93. doi:  10.5902/2316980X24327
    [44]
    Pettit N E, Froend R H, 2018. How important is groundwater availability and stream perenniality to riparian and floodplain tree growth?[J]. Hydrological Processes, 32(10): 1-13. doi:  10.1002/hyp.11510
    [45]
    Pfautsch S, Gessler A, Rennenberg H, et al, 2010. Continental and local climatic influences on hydrology of eucalypt-Nothofagus ecosystems revealed by δ2H, δ13C, and δ18O of ecosystem samples[J]. Water Resources Research, 46(3): 625-625. doi:  10.1029/2009WR007807
    [46]
    Sepideh Z, Randol V V, Melanie Z, et al, 2017. Transpiration of Eucalyptus woodlands across a natural gradient of depth-to-groundwater[J]. Tree Physiology, 37(7): 961-975. doi:  10.1093/treephys/tpx024
    [47]
    Tappa D J, Kohn M J, Mcnamara J P, et al, 2016. Isotopic composition of precipitation in atopographically steep, seasonally snow-dominated watershed and implications of variations from theglobal meteoric water line[J]. Hydrological Processes, 30(24): 4582-4592. doi:  10.1002/hyp.10940
    [48]
    Terada R, Hirata R, Galvao P, et al, 2022. Hydraulic relationship between aquifer and pond under potential influence of eucalyptus and sugarcane in tropical region of Sao Paulo, Brazil[J]. Environmental Earth Sciences, 81(9): 271.1-271.16. doi:  10.1007/s12665-022-10349-1
    [49]
    Turner N C, Ernst-detlef S, Dean N, et al, 2010. Growth in two common gardens reveals species by environment interaction in carbon isotope discrimination of Eucalyptus[J]. Tree Physiology, 30(6): 741-747. doi:  10.1093/treephys/tpq029
    [50]
    Vega-Grau A M, McDonnell J, Schmidt S, et al, 2021. Isotopic fractionation from deep roots to tall shoots: a forensic analysis of xylem water isotope composition in mature tropical savanna trees[J]. Science of The Total Environment, 795: 148675. doi:  10.1016/j.scitotenv.2021.148675
    [51]
    Walker C D, Brunel J P, 1990. Examining evapotranspiration in a semi-arid region using stable isotopes of hydrogen and oxygen[J]. Journal of Hydrology, 118(1/4): 55-75. doi:  10.1016/0022-1694(90)90250-2
    [52]
    Wang J D, Song C Q, Reager John T, et al, 2018. Recent global decline in endorheic basin water storages[J]. Nature Geoscience, 11: 926-932. doi:  10.1038/s41561-018-0265-7
    [53]
    Wieser G, Oberhuber W, Waldboth B, et al, 2018. Long-term trends in leaf level gas exchange mirror tree-ring derived intrinsic water-use efficiency of Pinus cembra at treeline during the last century[J]. Agricultural and Forest Meteorology, 248: 251-258. doi:  10.1016/j.agrformet.2017.09.023
    [54]
    Wu H W, Li X Y, Li J, et al, 2016. Differential soil moisture pulse uptake by coexisting plants in an alpine Achnatherum splendens grassland community[J]. Environmental Earth Sciences, 75(10): 914. doi:  10.1007/s12665-016-5694-2
    [55]
    Xu Q, Li H B, Chen J Q, et al, 2011. Water use patterns of three species in subalpine forest, Southwest China: the deuterium isotope approach[J]. Ecohydrology, 4(2): 236-244. doi:  10.1002/eco.179
    [56]
    Xu X, Guan H D, Deng Z J, 2014. Isotopic composition of throughfall in pine plantation and native eucalyptus forest in South Australia[J]. Journal of Hydrology, 514: 150-157. doi:  10.1016/j.jhydrol.2014.03.068
    [57]
    Zhou J J, Wang X, Ma L, et al, 2023. Variation of soil-plant-atmosphere continuum stable isotope and water source in Qinghai spruce forest of the eastern Qilian Mountains[J]. Journal of Mountain Science, 20(2): 355-366. doi:  10.1007/s11629-022-7665-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (35) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return