Volume 4 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Wenzhu Li, Yi Wang, Conghui Ji, Junwei Luan. Carbon Storage Assessment and Potential Prediction of Bamboo Products in China Based on IPCC First-order Decay Method and Prophet Model[J]. Terrestrial Ecosystem and Conservation, 2024, 4(1): 35-47. doi: 10.12356/j.2096-8884.2023-0064
Citation: Wenzhu Li, Yi Wang, Conghui Ji, Junwei Luan. Carbon Storage Assessment and Potential Prediction of Bamboo Products in China Based on IPCC First-order Decay Method and Prophet Model[J]. Terrestrial Ecosystem and Conservation, 2024, 4(1): 35-47. doi: 10.12356/j.2096-8884.2023-0064

Carbon Storage Assessment and Potential Prediction of Bamboo Products in China Based on IPCC First-order Decay Method and Prophet Model

doi: 10.12356/j.2096-8884.2023-0064
  • Received Date: 2023-11-20
  • Accepted Date: 2024-02-29
  • Available Online: 2024-04-19
  • Publish Date: 2024-02-01
  •   Objective  Bamboo has a fast growth rate and a short harvest cycle, so bamboo products have advantages in carbon sequestration. However, there is little research on its carbon sequestration ability, so it’s urgent to evaluate the carbon stocks of bamboo products, which can explore its future carbon sequestration potential.  Method  This study calculates the carbon storage of bamboo products based on bamboo yield data (1961-2018) by combining the Intergovernmental Panel on Climate Change (IPCC) first-order decay method and life cycle analysis method. The carbon storage of bamboo products is further divided into in-use and disposal parts. The Prophet time series model is used to predict bamboo yield until 2060 to evaluate their contribution to China's dual carbon goals. Meanwhile, the accumulated carbon storage of bamboo products in the five provinces with the largest bamboo output during 1992 to 2018 is calculated and compared.   Result  Bamboo products in China are an important and increasing carbon sink. 1) For the in-use stage, annual CO2 fixation of bamboo product in China increased from 1.45 Tg CO2-eq in 1961 to 53.91 Tg CO2-eq in 2018. During 1961 to 2018, the accumulated CO2 fixation amount of in-use bamboo products was 479.23 Tg CO2-eq. In 2018, the annual CO2 fixation amount of disposed bamboo products was 14.41 Tg CO2-eq, and the accumulated CO2 fixation amount of disposed bamboo products during 1961 to 2018 was 188.47 Tg CO2-eq. In total, CO2 fixation amount of bamboo product in China was 68.32 Tg CO2-eq in 2018, and the accumulated CO2 fixation amount during 1961 to 2018 was 667.70 Tg CO2-eq. 2) According to the Prophet model prediction, in 2030, the fixed CO2 of bamboo products in our country was 82.75 Tg CO2-eq, in 2060 it was 133.27 Tg CO2-eq, CO2 fixation amount of bamboo products will reach to 1546.48 Tg CO2-eq from 1961 to 2018, and will reach to 5434.98 Tg CO2-eq by 2060 in China. 3) Additionally, in terms of provincial distribution, the top five provinces with the largest bamboo output during 1992 to 2018 are Fujian, Guangxi, Zhejiang, Yunnan and Guangdong, and the accumulated CO2 fixation amount of bamboo products were 162.28 Tg CO2-eq, 108.20 Tg CO2-eq, 70.51 Tg CO2-eq, 66.18 Tg CO2-eq and 52.31 Tg CO2-eq respectively.   Conclusion  Bamboo products play an important role in carbon sequestration of woody forest products in China, with strong capacity and huge potential in carbon sequestration. This study has laid an important foundation for promoting the bamboo-related carbon sink to be included in the internationally recognized forestry carbon sink accounting system, which is beneficial to develop the advantages of bamboo resources in China and further strengthen the protection and utilization of bamboo forest ecosystem.
  • loading
  • [1]
    白彦锋, 姜春前, 张守攻, 2009. 中国木质林产品碳储量及其减排潜力[J]. 生态学报, 29(1): 399-405. doi:  10.3321/j.issn:1000-0933.2009.01.048
    [2]
    曹先磊, 吴伟光, 2015. 不同地区毛竹林经营的经济效益与固碳能力分析——基于福建、浙江与江西的对比[J]. 林业资源管理, 1: 64-70. doi:  10.13466/j.cnki.lyzygl.2015.01.012
    [3]
    柴梅, 田明华, 杜磊, 等, 2022. 中国木材对外依存度降低的可能性分析[J]. 北京林业大学学报(社会科学版), 21(1): 19-28. doi:  10.13931/j.cnki.bjfuss.2021171
    [4]
    陈先刚, 张一平, 张小全, 等, 2008. 过去50年中国竹林碳储量变化[J]. 生态学报, 28(11): 5218-5227. doi:  10.3321/j.issn:1000-0933.2008.11.003
    [5]
    陈玉和, 陈章敏, 吴再兴, 等, 2008. 竹材人造板生产技术[J]. 竹子研究汇刊, 27(2): 5-10. doi:  10.3969/j.issn.1000-6567.2008.02.002
    [6]
    顾 蕾, 沈振明, 周宇峰, 等, 2012. 浙江省毛竹竹板材碳转移分析[J]. 林业科学, 48(1): 186-190. doi:  10.11707/j.1001-7488.20120131
    [7]
    郭起荣, 杨光耀, 杜天真, 等, 2005. 中国竹林的碳素特征[J]. 世界竹藤通讯, 3(3): 25-28. doi:  10.3969/j.issn.1672-0431.2005.03.007
    [8]
    国家林业和草原局, 2015 [2023-11-20]. 竹林经营碳汇项目方法学: AR-CM-005-V01 [S/OL]. https://www.cdm.ccchina.org.cn/archiver/cdmcn/UpFile/Files/Default/20160225144516709655.pdf.
    [9]
    郝天象, 王兵, 牛香, 等, 2022. 全面提升我国森林生态系统质量和稳定性的实践与思考[J]. 陆地生态系统与保护学报, 2(5): 13-31. doi:  10.12356/j.2096-8884.2022-0081
    [10]
    计薇, 顾蕾, 范伟青, 等, 2020. 碳汇目标下竹林经营经济效益评价与差异分析[J]. 林业经济问题, 40(3): 278-284. doi:  10.16832/j.cnki.1005-9709.20190238
    [11]
    李江, 黄从德, 张国庆, 2006. 川西退耕还林地苦竹林碳密度、碳贮量及其空间分布[J]. 浙江林业科技, 26(4): 1-5. doi:  10.3969/j.issn.1001-3776.2006.04.001
    [12]
    李玉敏, 冯鹏飞, 2019. 基于第九次全国森林资源清查的中国竹资源分析[J]. 世界竹藤通讯, 17(6): 45-48. doi:  10.12168/sjzttx.2019.06.010
    [13]
    林益明, 温万章, 1998. 绿竹林碳, 氮动态研究[J]. 竹子研究汇刊, 17(4): 25-30.
    [14]
    刘强, 2013, 不同经营取向毛竹林成本收益及其固碳能力研究——基于浙江的实证[D]. 杭州: 浙江农林大学.
    [15]
    伦飞, 李文华, 王震, 等, 2012. 中国伐木制品碳储量时空差异[J]. 生态学报, 32(9): 2918-2928. doi:  10.5846/stxb201103210348
    [16]
    牛香, 陈波, 郭珂, 等, 2022. 中国森林生态系统质量状况[J]. 陆地生态系统与保护学报, 2(5): 32-40. doi:  10.12356/j.2096-8884.2022-0066
    [17]
    朴世龙, 岳超, 丁金枝, 等, 2022. 试论陆地生态系统碳汇在“碳中和”目标中的作用[J]. 中国科学: 地球科学, 52(7): 1419-1426. doi:  10.1360/sste-2022-0011
    [18]
    阮宇, 张小全, 杜凡, 2006. 中国木质林产品碳贮量[J]. 生态学报, 26(12): 4212-4218. doi:  10.3321/j.issn:1000-0933.2006.12.039
    [19]
    王红彦, 左旭, 王道龙, 等, 2017. 中国林木剩余物数量估算[J]. 中南林业科技大学学报, 37(2): 29-38+43. doi:  10.14067/j.cnki.1673-923x.2017.02.006
    [20]
    张小标, 2019. 中国木质林产品碳收支与碳减排贡献[D]. 南京: 南京林业大学.
    [21]
    张哲旗, 周灵燕, 王国锋, 等, 2022. 华中东南地区高比例人工纯林引发的问题与对策[J]. 陆地生态系统与保护学报, 2(5): 62-70. doi:  10.12356/j.2096-8884.2022-0063
    [22]
    周国模, 姜培坤, 2004. 毛竹林的碳密度和碳贮量及其空间分布[J]. 林业科学, 40(6): 20-24. doi:  10.11707/j.1001-7488.20040604
    [23]
    周宇峰, 顾蕾, 刘红征, 等, 2013. 基于竹展开技术的毛竹竹板材碳转移分析[J]. 林业科学, 49(8): 96-102. doi:  10.11707/j.1001-7488.20130814
    [24]
    Buckingham K, Jepson P, Wu L, et al, 2011. The potential of bamboo is constrained by outmoded policy frames[J]. AMBIO, 40(5): 544-548. doi:  10.1007/s13280-011-0138-4
    [25]
    Canadell J G, Raupach M R, 2008. Managing forests for climate change mitigation[J]. Science, 320(5882): 1456-1457. doi:  10.1126/science.1155458
    [26]
    Chen X, Zhang X, Zhang Y, et al, 2009. Changes of carbon stocks in bamboo stands in China during 100 years[J]. Forest Ecology & Management, 258(7): 1489-1496. doi:  10.1016/j.foreco.2009.06.051
    [27]
    Clark L G, de Oliveira R P, 2018 [2023-11-20]. Diversity and evolution of the new world bamboos[C/OL]. Mexico: Proceedings World Bamboo Congress, 3-4. https://worldbamboo.net/wbcxi/keynotes/Clark,%20Lynn%20and%20Patricia%20de%20Oliveira.pdf.
    [28]
    FAO, 2020 [2023-11-20]. Global Forest Resources Assessment 2020–Key findings[R/OL]. Rome: FAO. https://www.fao.org/3/CA8753EN/CA8753EN.pdf.
    [29]
    Forster P, Ramaswamy V, Artaxo P, et al, 2007. Changes in atmospheric constituents in radiative forcing[M]. Cambridge: Cambridge University Press.
    [30]
    Gan J, Chen M, Semple K, et al, 2022. Life cycle assessment of bamboo products: review and harmonization[J]. Science of the Total Environment, 849(5): 157937. doi:  10.1016/j.scitotenv.2022.157937
    [31]
    Hou Y, Wang Q, Tan T, 2022. Prediction of carbon dioxide emissions in China using shallow learning with cross validation[J]. Energies, 15(22): 8642. doi:  10.3390/en15228642
    [32]
    Hunter L, 2002. Bamboo-solution to problems[J]. Journal of Bamboo and Rattan, 1(2): 101-107. doi:  10.1163/156915902760181577
    [33]
    IPCC, 2006a [2023-11-20], harvest wood products [M/OL] // 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Japan: IGES, 4: 12.1-12.33. https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_12_Ch12_HWP.pdf.
    [34]
    IPCC, 2006b [2023-11-20]. solid waste disposal[M/OL] // 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Japan: IGES, 5: 3.1-3.40. https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_3_Ch3_SWDS.pdf.
    [35]
    IPCC, 2014a. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Switzerland: IPCC.
    [36]
    IPCC, 2014b [2023-11-20]. 2013 Revised supplementary methods and good practice guidance arising from the Kyoto Protocol[R/OL]. Switzerland: IPCC.https://www.ipcc.ch/publication/2013-revised-supplementary-methods-and-good-practice-guidance-arising-from-the-kyoto-protocol/.
    [37]
    Ji C, Cao W, Chen Y, et al, 2016. Carbon balance and contribution of harvested wood products in China based on the production approach of the Intergovernmental Panel on Climate Change[J]. International Journal of Environmental Research and Public Health, 13(11): 1132. doi:  10.3390/ijerph13111132
    [38]
    Kumar Jha B, Pande S, 2021. Time series forecasting model for supermarket sales using FB-Prophet[C]. 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), 547-554.
    [39]
    Li P, Zhou G, Du H, et al, 2015. Current and potential carbon stocks in Moso bamboo forests in China[J]. Journal of Environmental Management, 156: 89-96. doi:  10.1016/j.jenvman.2015.03.030
    [40]
    Liese W, KÖhl M, 2015. Bamboo: the plant and its uses[M]. Switzerland: Springer.
    [41]
    Lin Z, Chao L, Wu C, et al, 2018. Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case study in Jiangle County, southeast China[J]. Acta Geochimica, 37(1): 90-101. doi:  10.1007/s11631-017-0160-8
    [42]
    Liu W Y, Hui C M, Wang F, et al, 2018 [2023-11-20]. Review of the resources and utilization of bamboo in China[M/OL]//Abdul Khalil H P S. Bamboo-Current and Future Prospects. https://www.intechopen.com/chapters/61106.
    [43]
    Normile D, 2020. China’s bold climate pledge earns praise-but is it feasible?[J]. Science, 370(6512): 17-18. doi:  10.1126/science.370.6512.17
    [44]
    Qian S, Wang H, Zarei E, et al, 2015. Effect of hydrothermal pretreatment on the properties of Moso bamboo particles reinforced polyvinyl chloride composites[J]. Composites Part B: Engineering, 82: 23-29. doi:  10.1016/j.compositesb.2015.08.007
    [45]
    Qiu Z, Feng Z, Song Y, et al, 2020. Carbon sequestration potential of forest vegetation in China from 2003 to 2050: predicting forest vegetation growth based on climate and the environment[J]. Journal of Cleaner Production, 252: 119715. doi:  10.1016/j.jclepro.2019.119715
    [46]
    Skog K E, 2008 [2023-11-20]. Sequestration of carbon in harvested wood products for the United States[J/OL]. Forest Products Journal, 58(6): 56-72. https://www.fs.usda.gov/research/treesearch/31171.
    [47]
    Taylor S J, Letham B, 2018. Forecasting at scale[J]. The American Statistician, 72(1): 37-45. doi:  10.7287/peerj.preprints.3190v2
    [48]
    Vogtländer J, van der Lugt P, Brezet H, 2010. The sustainability of bamboo products for local and Western European applications. LCAs and land-use[J]. Journal of Cleaner Production, 18(13): 1260-1269. doi:  10.1016/j.jclepro.2010.04.015
    [49]
    Zhang X, Lu J, Zhang X, 2022. Spatiotemporal trend of carbon storage in China’s bamboo industry, 1993-2018[J]. Journal of Environmental Management, 314: 114989. doi:  10.1016/j.jenvman.2022.114989
    [50]
    Zhang X, Yang H, Chen J, 2018. Life-cycle carbon budget of China’s harvested wood products in 1900-2015[J]. Forest Policy and Economics, 92: 181-192. doi:  10.1016/j.forpol.2018.05.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (157) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return