Volume 4 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Yao Tong, Zhe Cao, Menglin Li, Shuyi Xu, Jihong Huang, Yi Ding, Runguo Zang. The Diversity Composition and Distribution Characteristics of Resource Plants in Xinjiang[J]. Terrestrial Ecosystem and Conservation, 2024, 4(1): 11-22, 34. doi: 10.12356/j.2096-8884.2023-0071
Citation: Yao Tong, Zhe Cao, Menglin Li, Shuyi Xu, Jihong Huang, Yi Ding, Runguo Zang. The Diversity Composition and Distribution Characteristics of Resource Plants in Xinjiang[J]. Terrestrial Ecosystem and Conservation, 2024, 4(1): 11-22, 34. doi: 10.12356/j.2096-8884.2023-0071

The Diversity Composition and Distribution Characteristics of Resource Plants in Xinjiang

doi: 10.12356/j.2096-8884.2023-0071
  • Received Date: 2023-12-12
  • Accepted Date: 2024-02-19
  • Available Online: 2024-04-11
  • Publish Date: 2024-02-29
  •   Objective  Identifying the species composition and spatial distribution of Xinjiang’s resource plants is crucial for their effective conservation.   Method  Based on an extensive review, collection, and organization of literature, focuses on the vascular plants naturally distributed in Xinjiang, we gathered, organized and summarized information on the types, distribution, and habitats of Xinjiang’s resource plants and analyzed the basic composition, geographical and habitat distribution characteristics of Xinjiang’s resource plants.   Result  1) There are a total of 1003 species of resource plants naturally distributed in Xinjiang, belonging to 104 families and 460 genera. Among the three groups of ferns, gymnospermae and angiosperm, angiosperm plant species are relatively abundant, accounting for 96.31% of the total species. Based on the type of use, these resource pants can be categorized into edible, medicinal, industrial, and protective plants, with medicinal plants making up the majority at 77.77%. The life forms include herbs, shrubs and trees, with herbs being the predominant form accounting for 82.35%. 2) The horizontal geographical distribution across cities is uneven, mainly concentrated in several prefecture-level cities in northern Xinjiang, with the Altay region having the richest species composition, containing 70.09% of the species. 3) The vertical geographical distribution across altitudes is broad, mainly concentrated in the mid-altitude range of 1000~2100 m, showing a unimodal distribution pattern that first increases and then decreases with rising altitude. 4) The distribution across habitats is uneven. Grassland and forest, are types of (natural) vegetation containing the most species, accounting for 32.70% and 31.80% of the total species, respectively.  Conclusion  Xinjiang's resource plants have a rich composition, with herbs being the main body and medicinal plants being the most numerous. The spatial distribution of Xinjiang’s resource plants is uneven, mainly concentrated in the mid-altitude regions of the mountains in northern Xinjiang, primarily in grassland and forest habitats. This study provides a reference for the conservation of resource plants diversity in Xinjiang region.
  • loading
  • [1]
    陈慧妹, 李文军, 邱娟, 等, 2023. 新疆野生维管植物名录[J]. 生物多样性, 31(9): 1-7. doi:  10.17520/biods.2023124
    [2]
    曹吉强, 徐红, 2022. 新疆棉花的发展现状与质量提升对策[J]. 棉纺织技术, 50(6): 71-74.
    [3]
    崔乃然, 李学禹, 1998. 新疆极端环境条件下的植物种质资源[J]. 石河子大学学报:自然科学版, 4: 304-319. doi:  10.13880/j.cnki.65-1174/n.1998.04.005
    [4]
    丁建, 夏燕莉, 2005. 中国药用植物资源现状[J]. 资源开发与市场, 21(5): 453-454. doi:  10.3969/j.issn.1005-8141.2005.05.023
    [5]
    高吉喜, 薛达元, 马克平, 2018. 中国生物多样性国情研究[M]. 北京: 中国环境科学出版社.
    [6]
    国家林业和草原局, 农业农村部, (2021-09-07) [2023-12-12]. 国家重点保护野生植物名录 [EB/OL]. https://www.gov.cn/zhengce/zhengceku/2021-09/09/content_5636409.htm.
    [7]
    国家统计局, 2021. 中国统计年鉴[M]. 北京: 中国统计出版社.
    [8]
    贺晋云, 张明军, 王鹏, 等, 2011. 新疆气候变化研究进展[J]. 干旱区研究, 28(3): 499-508. doi:  10.13866/j.azr.2011.03.022
    [9]
    贺可, 吴世新, 杨怡, 等, 2018. 近40a新疆土地利用及其绿洲动态变化[J]. 干旱区地理, 41(6): 1333-1340.
    [10]
    洪德元, 2016. 生物多样性事业需要科学、可操作的物种概念[J]. 生物多样性, 24(9): 979-999. doi:  10.17520/biods.2016203
    [11]
    亨利·威尔逊, 胡启明, 2015. 中国——园林之母[M]. 广州: 广东科技出版社.
    [12]
    环境保护部, 中国科学院, (2013-09-02) [2023-12-12]. 关于发布《中国生物多样性红色名录-高等植物卷》的公告 [EB/OL]. https://www.mee.gov.cn/gkml/hbb/bgg/201309/t20130912_260061.htm.
    [13]
    姜闯道, 林秦文, 王英伟, 等, 2011. 中国野生资源植物研究历史, 现状及展望[C]// 中国植物学会植物园分会编辑委员会. 中国植物园(第十四期). 北京: 中国林业出版社, 29-36.
    [14]
    姜彦成, 党荣理, 2002. 植物资源学[M]. 乌鲁木齐: 新疆人民出版社.
    [15]
    孔宏智, 2016. 生物多样性事业呼唤对物种概念和物种划分标准的深度讨论[J]. 生物多样性, 24(9): 977-978. doi:  10.17520/biods.2016291
    [16]
    李利平, 贾秀红, 尹林克, 2017. 新疆植物分布区特征及其与气候和丰富度的关系[J]. 中国科学: 生命科学, 47(3): 314-324.
    [17]
    李利平, 努尔巴依·阿布都沙力克, 等, 2011. 新疆野生维管束植物物种丰富度分布格局的水热解释[J]. 干旱区研究, 28(1): 25-30. doi:  10.13866/j.azr.2011.01.003
    [18]
    李晓东, 傅华, 李凤霞, 等, 2011. 气候变化对西北地区生态环境影响的若干进展[J]. 草业科学, 28(2): 286-295.
    [19]
    李学禹, 马淼, 崔大方, 等, 1998. 新疆植物物种多样性的特点分析[J]. 石河子大学学报(自然科学版), 2(4): 289-303. doi:  10.13880/j.cnki.65-1174/n.1998.04.004
    [20]
    刘彬, 布买丽娅·吐如汗, 艾比拜姆·克热木, 等, 2018. 新疆天山南坡中段种子植物区系垂直分布格局分析[J]. 植物科学学报, 36(2): 191-202. doi:  10.11913/PSJ.2095-0837.2018.20191
    [21]
    刘鸿雁, 唐志尧, 2021. 华北地区植物资源保护与利用[M]. 北京: 科学出版社.
    [22]
    刘志勇, 张金波, 王威, 等, 2011. 保护新疆植物种质资源合理开展资源创新与利用[J]. 新疆农业科学, 48(9): 1696-1700.
    [23]
    马克平, 钱迎倩, 1998. 生物多样性保护及其研究进展(综述)[J]. 应用与环境生物学报, 4(1): 95-99.
    [24]
    满苏尔·沙比提, 2012. 中国省市区地理: 新疆地理[M]. 北京: 北京师范大学出版社, 337.
    [25]
    潘伯荣, 2021. 天山维管植物名录[M]. 南京: 东南大学出版社.
    [26]
    沈观冕, 2010. 新疆经济植物及其利用[M]. 乌鲁木齐: 新疆科学技术出版社.
    [27]
    世界资源研究所(WRI)等, 1993. 全球生物多样性策略[M]. 北京: 中国标准出版社.
    [28]
    覃海宁, 杨永, 董仕勇, 等, 2017. 中国高等植物受威胁物种名录[J]. 生物多样性, 25(7): 696-744. doi:  10.17520/biods.2017144
    [29]
    王荷生, 1997. 华北植物区系地理[M]. 北京: 科学出版社.
    [30]
    王永刚, 叶强, 王艺菡, 等, 2022. 新疆分布的国家重点保护野生植物地理成分及分布特征[J]. 植物资源与环境学报, 31(4): 20-27.
    [31]
    吴征镒, 周俊, 裴盛基, 1983. 植物资源的合理利用与保护[C]//中国植物学会50周年年会学术报告及论文摘要汇编. 5-14.
    [32]
    新疆八一农学院, 1983. 新疆植物检索表[M]. 乌鲁木齐: 新疆人民出版社.
    [33]
    新疆维吾尔自治区林业和草原局, 农业农村厅, (2022-03-28) [2023-12-12]. 新疆国家重点保护野生植物名录发布 [EB/OL]. http://www.forestry.gov.cn/main/102/20220325/084033377439736.html.
    [34]
    新疆维吾尔自治区人民政府办公厅, (2007-08-29) [2023-12-12]. 关于发布新疆维吾尔自治区重点保护野生植物名录(第一批)的通知 [EB/OL]. http://www.xinjiang.gov.cn/xinjiang/gfxwj/200708/b5862cfc838a4c4aac5220337d19c2a0.shtml.
    [35]
    《新疆植物志》编写委员会, 2014. 新疆植物志·简本[M]. 乌鲁木齐: 新疆人民出版总社, 新疆科学技术出版社.
    [36]
    《新疆植物志》编写委员会, 1993—2011. 新疆植物志: 1-6卷[M]. 乌鲁木齐: 新疆科技卫生出版社, 新疆科学技术出版社.
    [37]
    应俊生, 2001. 中国种子植物物种多样性及其分布格局[J]. 生物多样性, 9(4): 393-398. doi:  10.17520/biods.2001058
    [38]
    张佳平, 丁彦芬, 2012. 中国野生观赏植物资源调查、评价及园林应用研究进展[J]. 中国野生植物资源, 31(6): 18-23, 31.
    [39]
    张健, 孔宏智, 黄晓磊, 等, 2022. 中国生物多样性研究的30个核心问题[J]. 生物多样性, 30(10): 22609. doi:  10.17520/biods.2022609
    [40]
    张立运, 潘伯荣, 2000. 新疆植物资源评价及开发利用[J]. 干旱区地理, 23(4): 331-336. doi:  10.13826/j.cnki.cn65-1103/x.2000.04.008
    [41]
    张炜, 2014. 浅析新疆草地资源利用与保护现状[J]. 新疆畜牧业, 2: 24-27. doi:  10.16795/j.cnki.xjxmy.2014.02.007
    [42]
    中国科学院新疆综合考察队, 1978. 新疆植被及其利用[M]. 北京: 科学出版社.
    [43]
    中国科学院植物科学数据中心, (2022-05-20) [2023-12-12]. 中国植物物种名录(2022版)[DB/OL]. https://www.plantplus.cn/doi/10.12282/plantdata.0061.
    [44]
    中国植被编辑委员会, 1980. 中国植被[M]. 北京: 科学出版社.
    [45]
    朱太平, 刘亮, 朱明, 2007. 中国资源植物[M]. 北京: 科学出版社.
    [46]
    Allan V, Vetriventhan M, Senthil R, et al, 2020. Genome-wide DArTSeq genotyping and phenotypic based assessment of within and among accessions diversity and effective sample size in the diverse sorghum, pearl millet, and pigeonpea landraces[J]. Frontiers in Plant Science, 11: 587426. doi:  10.3389/fpls.2020.587426
    [47]
    Andy J, Annie L, Hijmans R J, 2008. The effect of climate change on crop wild relatives[J]. Agriculture, Ecosystems & Environment: An International Journal for Scientific Research on the Relationship of Agriculture and Food Production to the Biosphere, 126(1/2): 13-23. doi:  10.1016/j.agee.2008.01.013
    [48]
    Antonelli A, Smith R J, Fry C, et al, 2020. State of the world’s plants and fungi [R]. London: Royal Botanic Gardens (Kew), Sfumato Foundation.
    [49]
    Aryal J P, Sapkota T B, Khurana R, et al, 2020. Climate change and agriculture in South Asia: adaptation options in smallholder production systems[J]. Environment, Development and Sustainability, 22(6): 5045-5075. doi:  10.1007/s10668-019-00414-4
    [50]
    Auguie B, (2017-09-09) [2023-12-12]. gridExtra: Miscellaneous Functions for "Grid" Graphics (Version R package version 2.3)[CP/OL]. https://CRAN.R-project.org/package=gridExtra.
    [51]
    Badr A, El-Shazly H H, Tarawneh R A, et al, 2020. Screening for drought tolerance in maize (Zea mays L.) germplasm using germination and seedling traits under simulated drought conditions[J]. Plants, 9(5): 565. doi:  10.3390/plants9050565
    [52]
    Byng J, Chase M, Christenhusz M, et al, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV[J]. Botanical Journal of the Linnean Society, 181(1): 1-20. doi:  10.1111/boj.12385
    [53]
    CBD, 2020 [2023-12-12]. Global Biodiversity Outlook 5 [R/OL]. Montreal. https://www.cbd.int/gbo5.
    [54]
    Chaudhry S, Sidhu G P S, 2022. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review[J]. Plant Cell Reports, 41(1): 1-31. doi:  10.1007/s00299-021-02759-5
    [55]
    Chen Q, Chen Q J, Sun G Q, et al, 2019. Genome-wide identification of cyclophilin gene family in cotton and expression analysis of the fibre development in Gossypium barbadense[J]. International Journal of Molecular Sciences, 20(2): 349-365. doi:  10.3390/ijms20020349
    [56]
    Chen S L, Yu H, Luo H M, et al, 2016. Conservation and sustainable use of medicinal plants: problems, progress, and prospects[J]. Chinese Medicine, 11(1): 1-10. doi:  10.1186/s13020-016-0108-7
    [57]
    Christenhusz M, Reveal J, Farjon A, et al, 2011. A new classification and linear sequence of extant gymnosperms[J]. Phytotaxa, 19: 55-70. doi:  10.11646/phytotaxa.19.1.3
    [58]
    de Mendiburu F. (2023-06-30) [2023-12-12]. agricolae: Statistical Procedures for Agricultural Research (Version R package version 1.3-6)[CP/OL]. https://cran.r-project.org/src/contrib/Archive/agricolae/agricolae_1.3-6.tar.gz.
    [59]
    Flora of China Editorial Committee, 1988—2013. Flora of China 1-25 volumes[M]. Beijing: Science Press and St. Louis: Missouri Botanical Garden Press.
    [60]
    FAO, 2021 [2023-12-12]. Value of agricultural production [DB/OL]. https://www.fao.org/faostat/zh/#data/QV.
    [61]
    Farssi O, Saih R, El Moukhtari A, et al, 2021. Synergistic effect of Pseudomonas alkylphenolica PF9 and Sinorhizobium meliloti Rm41 on Moroccan alfalfa population grown under limited phosphorus availability[J]. Saudi Journal of Biological Sciences, 28(7): 3870-3879. doi:  10.1016/j.sjbs.2021.03.069
    [62]
    Ferrier S, Drielsma M, 2010. Synthesis of pattern and process in biodiversity conservation assessment: a flexible whole-landscape modelling framework[J]. Diversity and Distributions, 16(3): 386-402. doi:  10.1111/j.1472-4642.2010.00657.x
    [63]
    Gairola S, Al Shaer K I, Al Harthi E K, et al, 2018. Strengthening desert plant biotechnology research in the United Arab Emirates: a viewpoint[J]. Physiology and Molecular Biology of Plants, 24(4): 521-533. doi:  10.1007/s12298-018-0551-2
    [64]
    Grace O M, Lovett J C, Gore C J, et al, 2020. Plant power: opportunities and challenges for meeting sustainable energy needs from the plant and fungal kingdoms[J]. Plants, People, Planet, 2(5): 446-462. doi:  10.1002/ppp3.10147
    [65]
    Huang H, 2011. Plant diversity and conservation in China: planning a strategic bioresource for a sustainable future[J]. Botanical Journal of the Linnean Society, 166(3): 282-300. doi:  10.1111/j.1095-8339.2011.01157.x
    [66]
    Huang J H, Liu C R, Guo Z J, et al, 2018. Seed plant features, distribution patterns, diversity hotspots, and conservation gaps in Xinjiang, China[J]. Nature and Conservation, 27: 1-15. doi:  10.3897/natureconservation.27.23728
    [67]
    IUCN, 2022 [2023-12-12]. Habitats Classification Scheme (Version 3.1) [EB/OL]. https://www.iucnredlist.org/resources/habitat-classification-scheme.
    [68]
    Jones A D, 2017. Critical review of the emerging research evidence on agricultural biodiversity, diet diversity, and nutritional status in low-and middle-income countries[J]. Nutrition Reviews, 75(10): 769-782. doi:  10.1093/nutrit/nux040
    [69]
    Kuzevanov V, Sizykh S, 2006. Botanic gardens resources: tangible and intangible aspects of linking biodiversity and human well-being[J]. Hiroshima Peace Science, 28(2006): 113-134. doi:  10.15027/15310
    [70]
    Li L P, Zhang B G, Xiao P G, et al, 2015. Native medicinal plant richness distribution patterns and environmental determinants of Xinjiang, Northwest China[J]. Chinese Herbal Medicines, 7(1): 45-53. doi:  10.1016/S1674-6384(15)60019-3
    [71]
    Lin S, Medina C A, Boge B, et al, 2020. Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.)[J]. BMC Plant Biology, 20(1): 1-18. doi:  10.1186/s12870-020-02520-2
    [72]
    Lobell D B, Schlenker W, Costa-Roberts J, 2011. Climate trends and global crop production since 1980[J]. Science, 333(6042): 616-620. doi:  10.1126/science.1204531
    [73]
    McCain C M, Grytnes J A, 2010. Elevational gradients in species richness[M]//Encyclopedia of Life Sciences. John Wiley & Sons.
    [74]
    Myers N, Mittermeier R A, Mittermeier C G, et al, 2000. Biodiversity hotspots for conservation priorities[J]. Nature, 403(6772): 853-858. doi:  10.1038/35002501
    [75]
    O’Neill B C, Kriegler E, Ebi K L, et al, 2017. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century[J]. Global Environmental Change, 42: 169-180. doi:  10.1016/j.gloenvcha.2015.01.004
    [76]
    Orme C D L, Davies R G, Burgess M, et al, 2005. Global hotspots of species richness are not congruent with endemism or threat[J]. Nature, 436(7053): 1016-1019. doi:  10.1038/nature03850
    [77]
    Pearce J L, Boyce M S, 2006. Modelling distribution and abundance with presence-only data[J]. Journal of Applied Ecology, 43(3): 405-412. doi:  10.1111/j.1365-2664.2005.01112.x
    [78]
    Piao S, Ciais P, Huang Y, et al, 2010. The impacts of climate change on water resources and agriculture in China[J]. Nature, 467(7311): 43-51. doi:  10.1038/nature09364
    [79]
    Piao S, Liu Q, Chen A, et al, 2019. Plant phenology and global climate change: current progresses and challenges[J]. Global Change Biology, 25(6): 1922-1940. doi:  10.1111/gcb.14619
    [80]
    Pironon S, Cantwell-Jones A, Forest F, et al, 2023. Towards an action plan for characterizing food plant diversity[J]. Nature Plants, 9: 34-35. doi:  10.1038/s41477-022-01300-0
    [81]
    Prendergast J R, Quinn R M, Lawton J H, et al, 1993. Rare species, the coincidence of diversity hotspots and conservation strategies[J]. Nature, 365(6444): 335-337. doi:  10.1038/365335a0
    [82]
    R Core Team, 2023 [2023-12-12]. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing [CP/OL]. https://www.R-project.org/.
    [83]
    Reid W V, 1998. Biodiversity hotspots[J]. Trends in Ecology & Evolution, 13(7): 275-280. doi:  10.1016/s0169-5347(98)01363-9
    [84]
    Sang W, Ma K, Axmacher J C, 2011. Securing a future for China's wild plant resources[J]. BioScience, 61(9): 720-725. doi:  10.1525/bio.2011.61.9.11
    [85]
    Scarlat N, Dallemand J F, Monforti-Ferrario F, et al, 2015. The role of biomass and bioenergy in a future bioeconomy: policies and facts[J]. Environmental Development, 15: 3-34. doi:  10.1016/j.envdev.2015.03.006
    [86]
    Schuettpelz E, Schneider H, Smith A, et al, 2016. A community-derived classification for extant lycophytes and ferns[J]. Journal of Systematics and Evolution, 54(6): 563-603. doi:  10.1111/jse.12229
    [87]
    Sommer J H, Kreft H, Kier G, et al, 2010. Projected impacts of climate change on regional capacities for global plant species richness[J]. Proceedings of the Royal Society B, 277(1692): 2271-2280. doi:  10.1098/rspb.2010.0120
    [88]
    Thomas C D, Cameron A, Green R E, et al, 2004. Extinction risk from climate change[J]. Nature, 427(6970): 145-148. doi:  10.1038/nature02121
    [89]
    Thuiller W, Albert C, Araújo M B, et al, 2008. Predicting global change impacts on plant species’ distributions: future challenges[J]. Perspectives in Plant Ecology, Evolution and Systematics, 9(3/4): 137-152. doi:  10.1016/j.ppees.2007.09.004
    [90]
    Vavilov N I, 1951. The origin, variation, immunity and breeding of cultivated plants[M]. New York: Ronald Press.
    [91]
    Wang C, He W, Kang L, et al, 2019. Two-dimensional fruit quality factors and soil nutrients reveals more favorable topographic plantation of Xinjiang jujubes in China[J]. PLoS ONE, 14(10): e0222567. doi:  10.1371/journal.pone.0222567
    [92]
    WHO, 1999. WHO monographs on selected medicinal plants[M]. Switzerland: World Health Organization Press.
    [93]
    Wickham H, 2016 [2023-12-12]. ggplot2: Elegant Graphics for Data Analysis[CP/OL]. https://ggplot2.tidyverse.org.
    [94]
    Wickham H, Vaughan D, GirlichM. (2023-01-24) [2023-12-12]. tidyr: Tidy Messy Data (Version R package version 1.3.0)[CP/OL]. https://cran.r-project.org/src/contrib/Archive/tidyr/tidyr_1.3.0.tar.gz.

    Wickham H, Vaughan D, GirlichM. (2023-01-24) [2023-12-12]. tidyr: Tidy Messy Data (Version R package version 1.3.0)[CP/OL]. https://cran.r-project.org/src/contrib/Archive/tidyr/tidyr_1.3.0.tar.gz.
    [95]
    Xia C, Huang Y, Qi Y, et al, 2022. Developing long-term conservation priority planning for medicinal plants in China by combining conservation status with diversity hotspot analyses and climate change prediction[J]. BMC Biology, 20(1): 1-20. doi:  10.1186/s12915-022-01285-4
    [96]
    Yu Y Y, Li J, Zhou Z X, et al, 2021. Response of multiple mountain ecosystem services on environmental gradients: how to respond, and where should be priority conservation? [J]. Journal of Cleaner Production, 278(4): 123264. doi:  10.1016/j.jclepro.2020.123264
    [97]
    Zhou Q, Luo D, Chai X, et al, 2018. Multiple regulatory networks are activated during cold stress in Medicago sativa L.[J]. International Journal of Molecular Sciences, 19(10): 3169. doi:  10.3390/ijms19103169
  • 新疆资源植物多样性的组成特点及分布特征-附录.xlsx
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (436) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return