Turn off MathJax
Article Contents
Ruiqiang Wang, Yanhua Mo, Jiangming Ma, Jiashuang Qin. Characteristics of Soil Respiration in Broad-leaved Evergreen Forest and Phyllostachys edulis Plantations in the Lijiang River Source Area[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2023-0073
Citation: Ruiqiang Wang, Yanhua Mo, Jiangming Ma, Jiashuang Qin. Characteristics of Soil Respiration in Broad-leaved Evergreen Forest and Phyllostachys edulis Plantations in the Lijiang River Source Area[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2023-0073

Characteristics of Soil Respiration in Broad-leaved Evergreen Forest and Phyllostachys edulis Plantations in the Lijiang River Source Area

doi: 10.12356/j.2096-8884.2023-0073
  • Received Date: 2023-12-18
  • Accepted Date: 2024-04-03
  •   Objective  Study the soil respiration characteristics of broad-leaved evergreen forest and Phyllostachys edulis plantations in the source area of the Lijiang River, and provide scientific basis for the estimation and management of soil carbon emissions in the region.  Method  Using the Li-8100A soil carbon flux measurement system to monitor the soil respiration rate of broad-leaved evergreen forest, Phyllostachys edulis forest, and nurtured and transformed Phyllostachys edulis plantations (Phyllostachys edulis - Polygonatum cyrtonema, Phyllostachysedulis-Sarcandra glabra) in the source area of Lijiang River from December 2022 to November 2023.  Result  1) The annual variation characteristics of soil respiration rate of broad-leaved evergreen forest, Phyllostachys edulis forest and nursed and transformed Phyllostachys edulis plantations showed an overall single-peak curve with an increasing and then decreasing rate. 2) The annual average of total soil respiration in broad-leaved evergreen forest was (4.18±2.01 μmol·m−2·s−1), significantly higher than that of Phyllostachys edulis forest (2.36±1.18 μmol·m−2·s−1) and Phyllostachys edulis plantations after tending and transformation (2.41±1.09 and 2.54±1.18 μmol·m−2·s−1), which were 1.77, 1.73 and 1.67 times higher than that of Phyllostachys edulis forest and Phyllostachys edulis plantations after tending and transformation, respectively. After tending and transformation the Phyllostachys edulis forest and intercropping Sarcandra glabra and Polygonatum cyrtonema, the total soil respiration was increased, and the total soil respiration of intercropping Sarcandra glabra was lower than that of intercropping Polygonatum cyrtonema. 3) Soil temperature and soil moisture are the main factors influencing soil respiration rates, and together explained 63.5%~86.1% of soil respiration variation in broad-leaved evergreen forest, Phyllostachys edulis forest and tended and transformed Phyllostachys edulis plantations.  Conclusion  The soil respiration of the broad-leaved evergreen forest in the source area of the Lijiang River is significantly higher than that of the Phyllostachys edulis forest and the Phyllostachys edulis plantations after tending and transformation. The soil respiration of Phyllostachys edulis plantations is increased after tending and transforming and intercropping Sarcandra glabra and Polygonatum cyrtonema. Soil temperature and soil moisture are the main g factors influencing the soil respiration and its components.
  • loading
  • [1]
    白杨, 2020. 生草栽培对山核桃林地土壤温室气体排放的影响[D]. 杭州: 浙江农林大学.
    [2]
    丁苏雅, 段敏, 朱瀚卿, 等, 2023. 竹生物质炭和竹凋落物对毛竹林土壤营养元素和酶活性的影响[J]. 土壤, 55(4): 795-803. doi:  10.13758/j.cnki.tr.2023.04.013
    [3]
    范洪旺, 滕臻, 许克福, 2018. 城市绿地土壤呼吸研究综述[J]. 生态科学, 37(5): 210-216. doi:  10.14108/j.cnki.1008-8873.2018.05.028
    [4]
    关伟涛, 吕世海, 刁兆岩, 等, 2023. 不同利用方式下呼伦贝尔草甸草原土壤呼吸动态特征及影响因素[J]. 干旱区资源与环境, 37(7): 117-126. doi:  10.13448/j.cnki.jalre.2023.168
    [5]
    郭艳萍, 李洪建, 2022. 天龙山灌丛生态系统土壤呼吸对水热和植被因子的响应[J]. 中国土壤与肥料, 59(4): 131-139. doi:  10.11838/sfsc.1673-6257.21262
    [6]
    海龙, 周梅, 张嘉開, 等, 2023. 毛乌素沙地不同林龄杨柴灌木林土壤呼吸及其影响因素[J]. 干旱区研究, 40(7): 1107-1116. doi:  10.13866/j.azr.2023.07.08
    [7]
    韩尚君, 韩海荣, 程小琴, 等, 2020. 改变凋落物输入对不同林龄油松林土壤呼吸的影响[J]. 生态学杂志, 39(11): 3576-3587. doi:  10.13292/j.1000-4890.202011.037
    [8]
    何可宜, 沈亚文, 冯继广, 等, 2021. 植物残体输入改变对樟子松人工林土壤呼吸及其温度敏感性的影响[J]. 北京大学学报(自然科学版), 57(2): 361-370. doi:  10.13209/j.0479-8023.2021.010
    [9]
    李泽霞, 陈爱华, 田晋华, 2023. 不同灌溉方式对侧柏人工林土壤呼吸的影响[J]. 节水灌溉, 48(9): 100-104+113. doi:  10.12396/jsgg.2023060
    [10]
    马晓翔, 张荣, 陈媛媛, 等, 2023. 三角枫-菊花复合经营对菊花生长及生理特性的影响[J]. 武汉轻工大学学报, 42(5): 54-62. doi:  10.3969/j.issn.2095-7386.2023.05.008
    [11]
    毛莹儿, 周秀梅, 王楠, 等, 2023. 毛竹扩张对杉木林土壤细菌群落的影响[J]. 生物多样性, 31(6): 157-166. doi:  10.17520/biods.2022659
    [12]
    全权, 张震, 何念鹏, 等, 2015. 短期氮添加对东灵山三种森林土壤呼吸的影响[J]. 生态学杂志, 34(3): 797-804. doi:  10.13292/j.1000-4890.2015.0108
    [13]
    沈健, 何宗明, 董强, 等, 2023. 滨海沙地两种防护林土壤呼吸月际动态及影响因素[J]. 应用与环境生物学报, 29(2): 432-439. doi:  10.19675/j.cnki.1006-687x.2022.01027
    [14]
    沈健, 何宗明, 董强, 等, 2023. 不同处理方式下湿地松人工林土壤呼吸及温度敏感性变化[J]. 西北林学院学报, 38(5): 10-18. doi:  10.3969/j.issn.1001-7461.2023.05.02
    [15]
    孙忠林, 华明阳, 冯颖, 等, 2022. 坡向对长白山区蒙古栎林土壤根际呼吸与异养呼吸的影响[J]. 生态学杂志, 41(12): 2317-2324. doi:  10.13292/j.1000-4890.202211.024
    [16]
    田秋燕, 赵正勇, 杨旗, 等, 2019. 基于全球数据库的森林土壤呼吸模型研究[J]. 林业与环境科学, 35(6): 1-6. doi:  CNKI:SUN:GDLY.0.2019-06-001
    [17]
    王锐, 向成华, 王谢, 等, 2016. 川中丘陵区3种林-药复合种植模式土壤呼吸特征[J]. 应用与环境生物学报, 22(5): 793-799. doi:  10.3724/SP.J.1145.2015.12028
    [18]
    魏书精, 罗碧珍, 孙龙, 等, 2013. 森林生态系统土壤呼吸时空异质性及影响因子研究进展[J]. 生态环境学报, 22(4): 689-704. doi:  10.16258/j.cnki.1674-5906.2013.04.008
    [19]
    吴蒙, 马姜明, 梁士楚, 等, 2014. 桂林尧山桉树及马尾松林冬季土壤碳通量特征[J]. 广西师范大学学报(自然科学版), 32(1): 133-140. doi:  10.16088/j.issn.1001-6600.2014.01.027
    [20]
    徐婷, 马露露, 李泽森, 等, 2023. 黄土丘陵区自然恢复草地土壤呼吸对降雨格局改变的响应[J]. 水土保持研究, 30(5): 92-98. doi:  10.13869/j.cnki.rswc.2023.05.004
    [21]
    夏国威, 汪東方, 朱涛, 等, 2023. 氮添加和凋落物去除对黔中喀斯特地区柳杉人工林土壤呼吸的影响[J]. 生态学报, 43(20): 8587-8597. doi:  10.20103/j.stxb.202208152345
    [22]
    张野, 刘新梅, 樊月, 等, 2024. 增温与凋落物去除对人工草地土壤呼吸的影响[J]. 草地学报, 32(1): 248-260. doi:  10.11733/j.issn.1007-0435.2024.01.026
    [23]
    赵世魁, 郭晋平, 张芸香, 2022. 森林演替和气候变暖对暖温带天然次生林植物根系呼吸的交互效应[J]. 水土保持学报, 36(3): 122-129. doi:  10.13870/j.cnki.stbcxb.2022.03.018
    [24]
    赵洋, 余雯静, 何易蔓, 等, 2024[2024-04-03]. 套种南方红豆杉对杉木人工林土壤肥力的影响[J/OL]. 应用与环境生物学报, 1-14.https://doi.org/10.19675/j.cnki.1006-687x.2023.05022.
    [25]
    钟雅琪, 钟全林, 李宝银, 等, 2020. 毛竹扩张对亚热带常绿阔叶林主要树种叶结构型性状的影响[J]. 生态学报, 40(14): 5018-5028. doi:  10.5846/stxb201904200801
    [26]
    竹万宽, 许宇星, 王志超, 等, 2023. 尾巨桉人工林土壤呼吸对林下植被管理措施的响应[J]. 浙江农林大学学报, 40(1): 164-175. doi:  10.11833/j.issn.2095-0756.20220138
    [27]
    Bhanja S N, Wang J Y, 2021. Influence of environmental factors on autotrophic, soil and ecosystem respirations in Canadian boreal forest[J]. Ecological Indicators, 125(5): 107517. doi:  10.1016/j.ecolind.2021.107517
    [28]
    Legesse T G, Qu L P, Dong G, et al, 2022. Extreme wet precipitation and mowing stimulate soil respiration in the Eurasian meadow steppe[J]. The Science of the Total Environment, 851(Pt 1): 158130.
    [29]
    Li X D, Fu H, Guo D, et al, 2010. Partitioning soil respiration and assessing the carbon balance in a Setaria italica (L. ) Beauv. Cropland on the Loess Plateau, Northern China[J]. Soil Biology and Biochemistry, 42(2): 337-346. doi:  10.1016/j.soilbio.2009.11.013
    [30]
    Meisnera, B E, Rousk J, 2013. Microbial Growth responses upon rewetting soil dried for four days or one year[J]. Soil Biology and Biochemistry, 66(11): 188-192. doi:  10.1016/j.soilbio.2013.07.014
    [31]
    Mirco R, Alessandro C, 2005. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps[J]. Global Change Biology, 11(7): 1024-1041. doi:  10.1111/j.1365-2486.2005.00963.x
    [32]
    Takeda, S, Ryota M, et al, 2023. Five-year measurement data along a 1200 m elevational gradient reveals that global warming increases soil respiration[J]. Frontiers in Forests and Global Change, 6: 1145474. doi:  10.3389/ffgc.2023.1145474
    [33]
    Yang C, Wang Y P, Huang Y Y, et al, 2022. Temperature dependence of ecosystem carbon, nitrogen and phosphorus residence times differs between subtropical and temperate forests in China[J]. Agricultural and Forest Meteorology, 326(12): 109165. doi:  10.1016/j.agrformet.2022.109165
    [34]
    Zheng Z M, Yu G R, Fu Y L, et al, 2009. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: A trans-China based case study[J]. Soil Biology and Biochemistry, 41(7): 1531-1540. doi:  10.1016/j.soilbio.2009.04.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(4)

    Article Metrics

    Article views (47) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return