Volume 4 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Yingqiao Dang, Xiaoyi Wang. The Status and Trends of Using Natural Enemies in the Biological Control of Forest Insect Pests[J]. Terrestrial Ecosystem and Conservation, 2024, 4(1): 72-85. doi: 10.12356/j.2096-8884.2024-0002
Citation: Yingqiao Dang, Xiaoyi Wang. The Status and Trends of Using Natural Enemies in the Biological Control of Forest Insect Pests[J]. Terrestrial Ecosystem and Conservation, 2024, 4(1): 72-85. doi: 10.12356/j.2096-8884.2024-0002

The Status and Trends of Using Natural Enemies in the Biological Control of Forest Insect Pests

doi: 10.12356/j.2096-8884.2024-0002
  • Received Date: 2024-01-10
  • Accepted Date: 2024-03-06
  • Available Online: 2024-04-18
  • Publish Date: 2024-02-29
  • The theoretical concept for using natural enemies in pest control has been proposed for over a century. However, in comparison to theoretical researches, the practical application of natural enemies has a history spanning over 1000 years. Currently, the applied research on natural enemies has made significant progress. Despite certain limitations, the future application of natural enemies in forest pest control is expected to undergo further development, especially with the advent of the Fourth Industrial Revolution and growing public concerns for the environment and personal safety. Here the mature strategies for the application of natural enemies in forestry were first provided, along with summarizes of the current state of artificial rearing and application technologies for natural enemies. Addressing the present development status of natural enemies in forest pest control, the key issues in rearing and application, such as poor reproductive efficiency, high costs, short storage periods, unscientific evaluation methods, and challenges in the approval of introducing and releasing natural enemies were highlighted. Building on this foundation, the trends in the application of natural enemies were proposed. The main principles and strategies for future application of natural enemies in forestry, the mechanized large-scale rearing, standardized quality control, and potential integration with other emerging technologies were also outlined. This review can provide guidance for the application and development of natural enemies in forestry.
  • loading
  • [1]
    Abbes K, Zouba A, Harbi A, et al, 2020. Effect of cold storage on the performance of Trichogramma bourarachae (Pintureau and Babault) (Hymenoptera: Trichogrammatidae)[J]. Egyptian Journal of Biological Pest Control, 30: 1-6. doi:  10.1186/s41938-020-00232-1
    [2]
    Abdi M K, Jucker C, de Marchi B, et al, 2020. Performance of Sclerodermus brevicornis, a parasitoid of invasive longhorn beetles, when reared on rice moth larvae[J]. Entomologia Experimentalis et Applicata, 169(1): 64-78. doi:  10.1111/eea.12946
    [3]
    Abe J, Pannebakker B A, 2017. Development of microsatellite markers and estimation of inbreeding frequency in the parasitoid wasp Melittobia[J]. Scientific Reports, 7(1): 39879. doi:  10.1038/srep39879
    [4]
    Barclay H J, 1987. Models for pest control: complementary effects of periodicreleases of sterile pests and parasitoids[J]. Theoretical Population Biology, 32(1): 76-89. doi:  10.1016/0040-5809(87)90041-4
    [5]
    Beggs J R, Rees J S, Toft R J, et al, 2008. Evaluating the impact of a biological control parasitoid on invasive Vespula wasps in a natural forest ecosystem[J]. Biological Control, 44(3): 399-407. doi:  10.1016/j.biocontrol.2007.10.016
    [6]
    Bolckmans K J F, 2003. State of affairs and future directions of product quality assurance in Europe[M]//Quality control and production of biological control agents: theory and testing procedures. Wallingford UK: CABI Publishing, 215-224.
    [7]
    Brabbs T, Collins D, Hérard F, et al, 2015. Prospects for the use of biological control agents against Anoplophora in Europe[J]. Pest Management Science, 71(1): 7-14. doi:  10.1002/ps.3907
    [8]
    Cai W Z, Yan Y H, Li L Y, 2005. The earliest records of insect parasitoids in China[J]. Biological Control, 32(1): 8-11. doi:  10.1016/j.biocontrol.2004.08.002
    [9]
    Camacho-Cervantes M, Ortega-Iturriaga A, Del-Val E, 2017. From effective biocontrol agent to successful invader: the harlequin ladybird (Harmonia axyridis) as an example of good ideas that could go wrong[J]. PeerJ, 5: e3296. doi:  10.7717/peerj.3296
    [10]
    Chen W, Li Y, Zhang C, et al, 2022a. Cold storage effects on biological parameters of Telenomus remus, a promising egg parasitoid of Spodoptera frugiperda, reared on Spodoptera litura eggs[J]. Journal of Pest Science, 96: 1365-1378. doi:  10.1007/s10340-022-01515-2
    [11]
    Chen X, Chen H, Zhao M, et al, 2022b. Insect industrialization and prospect in commerce: a case of China[J]. Entomological Research, 52(4): 178-194. doi:  10.1111/1748-5967.12576
    [12]
    Cioffi R, Travaglioni M, Piscitelli G, et al, 2020. Artificial intelligence and machine learning applications in smart production: progress, trends, and directions[J]. Sustainability, 12(2): 492. doi:  10.3390/su12020492
    [13]
    Cock M J W, Day R K, Hinz H L, et al, 2015. The impacts of some classical biological control successes[J]. CABI Reviews, 10(42): 1-58. doi:  10.1079/PAVSNNR201510042
    [14]
    Cock M J W, van Lenteren J C, Brodeur J, et al, 2010. Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control?[J]. BioControl, 55: 199-218. doi:  10.1007/s10526-009-9234-9
    [15]
    Colinet H, Hance T, 2010. Interspecific variation in the response to low temperature storage in different aphid parasitoids[J]. Annals of Applied Biology, 156(1): 147-156. doi:  10.1111/j.1744-7348.2009.00374.x
    [16]
    Conti E, Avila G, Barratt B, et al, 2021. Biological control of invasive stink bugs: review of global state and future prospects[J]. Entomologia Experimentalis et Applicata, 169(1): 28-51. doi:  10.1111/eea.12967
    [17]
    Cornell H V, Hawkins B A, 1993. Accumulation of native parasitoid species on introduced herbivores: a comparison of hosts as natives and hosts as invaders[J]. The American Naturalist, 141: 847-865. doi:  10.1086/285512
    [18]
    Culshaw-Maurer M, Sih A, Rosenheim J A, 2020. Bugs scaring bugs: enemy-risk effects in biological control systems[J]. Ecology Letters, 23(11): 1693-1714. doi:  10.1111/ele.13601
    [19]
    Daane K M, Mills N J, Tauber M J, 2002. Augmentative controls[J]. Encyclopedia of Pest Management, 1: 36-38.
    [20]
    Despland E, Lessard J P, 2022. Social predation by ants as a mortality source for an arboreal gregarious forest pest[J]. Basic and Applied Ecology, 59: 82-91. doi:  10.1016/j.baae.2022.01.001
    [21]
    Duan J J, Bauer L S, Abell K J, et al, 2015. Population dynamics of an invasive forest insect and associated natural enemies in the aftermath of invasion: implications for biological control[J]. Journal of Applied Ecology, 52(5): 1246-1254. doi:  10.1111/1365-2664.12485
    [22]
    Duan J J, Gould J R, Quinn N F, et al, 2023. Protection of North American ash against emerald ash borer with biological control: ecological premises and progress toward success[J]. BioControl, 68(2): 87-100. doi:  10.1007/s10526-023-10182-w
    [23]
    Elkinton J S, Boettner G H, 2012. Benefits and harm caused by the introduced generalist tachinid, Compsilura concinnata, in North America[J]. BioControl, 57: 277-288. doi:  10.1007/s10526-011-9437-8
    [24]
    Fernandez-Conradi P, Castagneyrol B, Jactel H, et al, 2021. Combining phytochemicals and multitrophic interactions to control forest insect pests[J]. Current Opinion in Insect Science, 44: 101-106. doi:  10.1016/j.cois.2021.04.007
    [25]
    Fischbein D, Corley J C, 2015. Classical biological control of an invasive forest pest: a world perspective of the management of Sirex noctilio using the parasitoid Ibalia leucospoides (Hymenoptera: Ibaliidae)[J]. Bulletin of Entomological Research, 105(1): 1-12. doi:  10.1017/S0007485314000418
    [26]
    Fischbein D, Lantschner M V, Corley J C, 2019. Modelling the distribution of forest pest natural enemies across invaded areas: towards understanding the influence of climate on parasitoid establishment success[J]. Biological Control, 132: 177-188. doi:  10.1016/j.biocontrol.2019.02.016
    [27]
    Flanders S E, 1949. Culture of entomophagous insects[J]. The Canadian Entomologist, 81(11): 257-274. doi:  10.4039/Ent81257-11
    [28]
    Giles K L, McCornack B P, Royer T A, et al, 2017. Incorporating biological control into IPM decision making[J]. Current Opinion in Insect Science, 20: 84-89. doi:  10.1016/j.cois.2017.03.009
    [29]
    Gontijo L M, 2019. Engineering natural enemy shelters to enhance conservation biological control in field crops[J]. Biological control, 130: 155-163. doi:  10.1016/j.biocontrol.2018.10.014
    [30]
    Gopalkrishna H R, Chakravarthy A K, Prasad H N N, 2022. Enhancing genetic efficiency of natural enemies of crop pests[M]//Genetic methods and tools for managing crop pests. Singapore: Springer Nature Singapore, 211-249.
    [31]
    Grabenweger G, Kehrli P, Zweimueller I, et al, 2010. Temporal and spatial variations in the parasitoid complex of the horse chestnut leafminer during its invasion of Europe[J]. Biological Invasions, 12: 2797-2813. doi:  10.1007/s10530-009-9685-z
    [32]
    Graebner L, Moreno D S, Baritelle J L, 1984. The Fillmore citrus protective district: a success story in integrated pest management[J]. Bulletin of the ESA, 30(4): 27-33. doi:  10.1093/besa/30.4.27
    [33]
    Gurr G M, Kvedaras O L, 2010. Synergizing biological control: scope for sterile insect technique, induced plant defences and cultural techniques to enhance natural enemy impact[J]. Biological Control, 52(3): 198-207. doi:  10.1016/j.biocontrol.2009.02.013
    [34]
    Gurr G M, You M, 2016. Conservation biological control of pests in the molecular era: new opportunities to address old constraints[J]. Frontiers in Plant Science, 6: 1255. doi:  10.3389/fpls.2015.01255
    [35]
    Guyot V, Castagneyrol B, Vialatte A, et al, 2015. Tree diversity limits the impact of an invasive forest pest[J]. PloS ONE, 10(9): e0136469. doi:  10.1371/journal.pone.0136469
    [36]
    He L S, Din Z M, Lai Y M., 2014. A review of the status of the larval parasitoid, Asecodes hispinarum Boucek, and of the pupal parasitoid, Tetrastichus brontispae Ferriere (Hymenoptera: Eulophidae), as biological control agents of the coconut leaf beetle, Brontispa longissima (Gestro)[J]. Life: The Excitement of Biology, 2(1): 42-63. doi:  10.9784/LEB2(1)He.01
    [37]
    Hermann S L, Landis D A, 2017. Scaling up our understanding of non-consumptive effects in insect systems[J]. Current Opinion in Insect Science, 20: 54-60. doi:  10.1016/j.cois.2017.03.010
    [38]
    Hoelmer K A, Sforza R F H, Cristofaro M, 2023. Accessing biological control genetic resources: the United States perspective[J]. BioControl, 68: 269-280. doi:  10.1007/s10526-023-10179-5
    [39]
    Horrocks K J, Avila G A, Holwell G I, et al, 2020. Integrating sterile insect technique with the release of sterile classical biocontrol agents for eradication: is the Kamikaze Wasp Technique feasible?[J]. BioControl, 65(3): 257-271. doi:  10.1007/s10526-020-09998-7
    [40]
    Howarth F G, 1983. Classical biocontrol: panacea or Pandora’s box[J]. Proceedings of the Hawaiian Entomological Society, 24: 239-244.
    [41]
    Howarth F G, 1991. Environmental impacts of classical biological control[J]. Annual Review of Entomology, 36: 485-509. doi:  10.1146/annurev.en.36.010191.002413
    [42]
    Imrei Z, Domingue M J, Lohonyai Z, et al, 2021. Identification of pheromone components of Plagionotus detritus (Coleoptera: Cerambycidae), and attraction of conspecifics, competitors, and natural enemies to the pheromone blend[J]. Insects, 12(10): 899. doi:  10.3390/insects12100899
    [43]
    Javaid N, 2023. Integration of context awareness in Internet of Agricultural Things[J]. ICT Express, 9(2): 189-196. doi:  10.1016/j.icte.2021.09.004
    [44]
    Joppa L N, 2017. The case for technology investments in the environment[J]. Nature, 552: 325. doi:  10.1038/d41586-017-08675-7
    [45]
    Jucker C, Hardy I C W, Malabusini S, et al, 2020. Factors affecting the reproduction and mass-rearing of Sclerodermus brevicornis (Hymenoptera: Bethylidae), a natural enemy of exotic flat-faced longhorn beetles (Coleoptera: Cerambycidae: Lamiinae)[J]. Insects, 11(10): 657. doi:  10.3390/insects11100657
    [46]
    Jutsum A R, 1988. Commercial application of biological control: status and prospects[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 318(1189): 357-373. doi:  10.1098/rstb.1988.0014
    [47]
    Keerthana M. , Shashank D U, Singh M K, et al, 2023. Introducing natural enemies of insect pests as biological control: scope and future prospects[J]. Vigyan Varta, 4(6): 203-205.
    [48]
    Kelly J L, Hagler J R, Kaplan I, 2014. Semiochemical lures reduce emigration and enhance pest control services in open-field predator augmentation[J]. Biological Control, 71: 70-77. doi:  10.1016/j.biocontrol.2014.01.010
    [49]
    Kenis M, Hurley B P, Colombari F, et al, 2019[2024-01-10]. Guide to the classical biological control of insect pests in planted and natural forests[R/OL]. FAO Forestry Paper No. 182. Rome: FAO. http://www.fao.org/3/ca3677en/ca3677en.pdf.
    [50]
    Kenis M, Hurley B P, Hajek A E, et al, 2017. Classical biological control of insect pests of trees: facts and figures[J]. Biological Invasions, 19: 3401-3417. doi:  10.1007/s10530-017-1414-4
    [51]
    Kumar V, Mehra L, McKenzie C L, et al, 2020. “Predator-In-First”: a preemptive biological control strategy for sustainable management of pepper pests in Florida[J]. Sustainability, 12(18): 7816. doi:  10.3390/su12187816
    [52]
    Landis D A, Orr D B, 1996 [2024-01-10]. Biological control: approaches and applications[M/OL]. Radcliffe E B, Hutchison W D, Cancelado R E. Radcliffe's IPM World Textbook. St. Paul, MN: University of Minnesota. https://ipmworld.umn.edu/landis.
    [53]
    Lavandero B, Wratten S, Hagler J, et al, 2004. The need for effective marking and tracking techniques for monitoring the movements of insect predators and parasitoids[J]. International Journal of Pest Management, 50(3): 147-151. doi:  10.1080/09670870410001731853
    [54]
    LeBeck L M, Leppla N C, 2021. 2021 guidelines for purchasing and using commercial natural enemies and biopesticides in North America: IN849/IPM-146, 02/2021[J]. EDIS, (2): 1-14. doi:  10.32473/edis-in849-2021
    [55]
    Legner E F, 2023[2023-08-18]. Biological control in forests[M/OL]. https://faculty.ucr.edu/~legneref/biotact/bc-34.htm#Strategies_in_Forest_ Biological_Control.
    [56]
    Lenteren J C, Cock M J W, 2020. The uptake of biological control in Latin America and the Caribbean[M]//Biological control in Latin America and the Caribbean: its rich history and bright future. Wallingford UK: CABI, 473-508.
    [57]
    Leppla N C, 2023. Concepts and methods of quality assurance for mass-reared parasitoids and predators[M]//Mass production of beneficial organisms. Academic Press, 261-290.
    [58]
    Lommen S T E, de Jong P W, Pannebakker B A, 2017. It is time to bridge the gap between exploring and exploiting: prospects for utilizing intraspecific genetic variation to optimize arthropods for augmentative pest control–a review[J]. Entomologia Experimentalis et Applicata, 162(2): 108-123. doi:  10.1111/eea.12510
    [59]
    Lommen S T E, (2013-05-16) [2024-01-10]. Exploring and exploiting natural variation in the wings of a predatory ladybird beetle for biological control[D/OL]. Leiden, The Netherlands: University of Leiden. http://hdl.handle.net/1887/20872.
    [60]
    Lupi D, Jucker C, Rocco A, et al, 2015. Notes on biometric variability in invasive species: the case of Psacothea hilaris hilaris (Pascoe) (Coleoptera, Cerambycidae, Lamiinae)[J]. Bulletin of Insectology, 68(1): 135-145.
    [61]
    Maňák V, Björklund N, Lenoir L, et al, 2016. Behavioural responses of pine weevils to non-consumptive interactions with red wood ants[J]. Journal of Zoology, 299(1): 10-16. doi:  10.1111/jzo.12321
    [62]
    Martel V, Johns R C, Jochems-Tanguay L, et al, 2021. The use of UAS to release the egg parasitoid Trichogramma spp. (Hymenoptera: Trichogrammatidae) against an agricultural and a forest pest in Canada[J]. Journal of Economic Entomology, 114(5): 1867-1881. doi:  10.1093/jee/toaa325
    [63]
    Martínez G, González A, Dicke M, 2018. Rearing and releasing the egg parasitoid Cleruchoides noackae, a biological control agent for the Eucalyptus bronze bug[J]. Biological Control, 123: 97-104. doi:  10.1016/j.biocontrol.2018.05.008
    [64]
    Martínez G, 2020. Biological control of forest pests in Uruguay[M]//Forest Pest and Disease Management in Latin America. Cham: Springer, 7-30.
    [65]
    Mazza G, Francardi V, Simoni S, et al, 2014. An overview on the natural enemies of Rhynchophorus palm weevils, with focus on R. ferrugineus[J]. Biological Control, 77: 83-92. doi:  10.1016/j.biocontrol.2014.06.010
    [66]
    Meshkova V L, Ridkokasha A D, Omelich A R, et al, 2021. The first results of the biological control of Ips sexdentatus using Thanasimus formicarius in Ukraine[J]. Forestry and Forest Melioration, 138: 91-96. doi:  10.33220/1026-3365.138.2021.91
    [67]
    Montgomery M E, Lyon S M, 1996. Natural enemies of adelgids in North America: their prospect for biological control of Adelges tsugae (Homoptera: Adelgidae)[C]//Proceedings of the first hemlock woolly adelgid review. Morgantown, WV, USA: USDA Forest Service, 89-102.
    [68]
    Morales-Ramos J A, Rojas M G, Shapiro-Ilan D I, 2022. Mass production of beneficial organisms: invertebrates and entomopathogens[M]. Academic Press.
    [69]
    Murdoch W W, Briggs C J, 1996. Theory for biological control: recent developments[J]. Ecology, 77(7): 2001-2013. doi:  10.2307/2265696
    [70]
    Murphy S T, Briscoe B R, 1999. The red palm weevil as an alien invasive: biology and prospects for biological control as a component of IPM[J]. Biocontrol News and Information, 20: 35-45.
    [71]
    Naranjo S E, Ellsworth P C, Frisvold G B, 2015. Economic value of biological control in integrated pest management of managed plant systems[J]. Annual Review of Entomology, 60: 621-645. doi:  10.1146/annurev-ento-010814-021005
    [72]
    Nealis V G, 1991. Natural enemies and forest pest management[J]. The Forestry Chronicle, 67(5): 500-505. doi:  10.5558/tfc67500-5
    [73]
    Nisole A, Stewart D, Kyei-Poku G, et al, 2020. Identification of spruce budworm natural enemies using a qPCR-based molecular sorting approach[J]. Forests, 11(6): 621. doi:  10.3390/f11060621
    [74]
    Penn S L, Ridgway R L, Scriven G T, et al, 1998. Quality assurance by the commercial producer of arthropod natural enemies[M]//Ridgway R L, Hoffmann M P, Inscoe M N, et al. Mass-reared natural enemies: application, regulation, and needs. Lanham, MD: Entomological Society of America, Thomas Say Publ, 202-230.
    [75]
    Pijnakker J, Vangansbeke D, Duarte M, et al, 2020. Predators and parasitoids-in-first: from inundative releases to preventative biological control in greenhouse crops[J]. Frontiers in Sustainable Food Systems, 4: 595630. doi:  10.3389/fsufs.2020.595630
    [76]
    Powell W, Pickett J A, 2003. Manipulation of parasitoids for aphid pest management: progress and prospects[J]. Pest Management Science, 59(2): 149-155. doi:  10.1002/ps.550
    [77]
    Ram A, Sharma K, 1977. Selective breeding for improving the fecundity and sex-ratio of Trichogramma fasciatum (Perkins) (Trichogrammatidae: Hymenoptera), an egg parasite of Lepidopterous hosts[J]. Entomologia, 2: 133-137.
    [78]
    Ramakers P M J, 1990. Manipulation of phytoseiid thrips predators in the absence of thrips[J]. Bulletin SROP, 13(5): 169-172.
    [79]
    Rowe L, Gibson D, Landis D A, et al, 2021. Wild bees and natural enemies prefer similar flower species and respond to similar plant traits[J]. Basic and Applied Ecology, 56: 259-269. doi:  10.1016/j.baae.2021.08.009
    [80]
    Roy H, Wajnberg E, 2008. From biological control to invasion: the ladybird Harmonia axyridis as a model species[J]. BioControl, 53(1): 1-4. doi:  10.1007/s10526-007-9127-8
    [81]
    Seebens H, Blackburn T M, Dyer E E, et al, 2017. No saturation in the accumulation of alien species worldwide[J]. Nature Communications, 8(1): 14435. doi:  10.1038/ncomms14435
    [82]
    Shah F M, Razaq M, 2021. From agriculture to sustainable agriculture: prospects for improving pest management in industrial revolution 4.0[M]//Handbook of Smart Materials, Technologies, and Devices. Cham: Springer, 1-18.
    [83]
    Shields M W, Johnson A C, Pandey S, et al, 2019. History, current situation and challenges for conservation biological control[J]. Biological Control, 131: 25-35. doi:  10.1016/j.biocontrol.2018.12.010
    [84]
    Shivaprakash K N, Swami N, Mysorekar S, et al, 2022. Potential for artificial intelligence (AI) and machine learning (ML) applications in biodiversity conservation, managing forests, and related services in India[J]. Sustainability, 14(12): 7154. doi:  10.3390/su14127154
    [85]
    Simmonds F, 1947. Improvement of the sex-ratio of a parasite by selection[J]. Canadian Entomologist, 79(3): 41-44. doi:  10.4039/Ent7941-3
    [86]
    Simon C, Cooley J R, Karban R, et al, 2022. Advances in the evolution and ecology of 13-and 17-year periodical cicadas[J]. Annual Review of Entomology, 67: 457-482. doi:  10.1146/annurev-ento-072121-061108
    [87]
    Smith C N, 1966. Insect colonization and mass production[M]. San Diego, CA, USA: Academic Press, 612.
    [88]
    Smith H S, 1919. On some phases of insect control by the biological method[J]. Journal of Economic Entomology, 12: 288-292.
    [89]
    Soares M A, Campos M R, Passos L C, et al, 2019. Botanical insecticide and natural enemies: a potential combination for pest management against Tuta absoluta[J]. Journal of Pest Science, 92: 1433-1443. doi:  10.1007/s10340-018-01074-5
    [90]
    Staab M, Schuldt A, 2020. The influence of tree diversity on natural enemies—a review of the “enemies” hypothesis in forests[J]. Current Forestry Reports, 6: 243-259. doi:  10.1007/s40725-020-00123-6
    [91]
    Stenberg J A, Sundh I, Becher P G, et al, 2021. When is it biological control? A framework of definitions, mechanisms, and classifications[J]. Journal of Pest Science, 94(3): 665-676. doi:  10.1007/s10340-021-01354-7
    [92]
    Telford A, Cavers S, Ennos R A, et al, 2015. Can we protect forests by harnessing variation in resistance to pests and pathogens?[J]. Forestry: An International Journal of Forest Research, 88(1): 3-12. doi:  10.1093/forestry/cpu012
    [93]
    Valente C, Gonçalves C, Rainha M, et al, 2019. Biocontrol in practice: managing Gonipterus platensis in Portugal[M]. Colombo: Pesquisa Florestal Brasileira, 39.
    [94]
    van Driesche R, Hoddle M, 2017 [2024-01-10]. Non-target effects of insect biocontrol agents and trends in host specificity since 1985[J/OL]. CABI Reviews, 1-66. https://doi.org/10.1079/PAVSNNR201611044.
    [95]
    van Driesche R, Simberloff D, Blossey B, et al, 2016. Integrating biological control into conservation practice[M]. John Wiley & Sons.
    [96]
    van Lenteren J C, Bale J, Bigler F, et al, 2006. Assessing risks of releasing exotic biological control agents of arthropod pests[J]. Annual Review of Entomology, 51: 609-634. doi:  10.1146/annurev.ento.51.110104.151129
    [97]
    van Lenteren J C, Bolckmans K, Köhl J, et al, 2018. Biological control using invertebrates and microorganisms: plenty of new opportunities[J]. BioControl, 63: 39-59. doi:  10.1007/s10526-017-9801-4
    [98]
    van Lenteren J C, Roskam M M, Timmer R, 1997. Commercial mass production and pricing of organisms for biological control of pests in Europe[J]. Biological Control, 10(2): 143-149. doi:  10.1006/bcon.1997.0548
    [99]
    van Lenteren J C, 2000. Success in biological control of arthropods by augmentation of natural enemies[M]//Biological control: measures of success. Dordrecht: Springer Netherlands, 77-103.
    [100]
    van Lenteren J C, 2012. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake[J]. BioControl, 57(1): 1-20. doi:  10.1007/s10526-011-9395-1
    [101]
    Vega F E, Hofstetter R W, 2014. Bark beetles: biology and ecology of native and invasive species[M]. Academic Press.
    [102]
    Waage J K, Greathead D J, 1988. Biological control: challenges and opportunities[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 318(1189): 111-128. doi:  10.1098/rstb.1988.0001
    [103]
    Wang S, Chen X, Li Y, et al, 2020. Effects of changing temperature on the physiological and biochemical properties of Harmonia axyridis larvae[J]. Entomologia Generalis, 40(3): 229-241. doi:  10.1127/entomologia/2020/0917
    [104]
    Waterhouse D F, 1998. Biological Control of Insect Pests: Southeast Asian Prospects[M]. Canberra, Australia: ACIAR, 548.
    [105]
    Welsh T J, Stringer L D, Caldwell R, et al, 2017. Irradiation biology of male brown marmorated stink bugs: is there scope for the sterile insect technique?[J]. International Journal of Radiation Biology, 93(12): 1357-1363. doi:  10.1080/09553002.2017.1388547
    [106]
    Wegensteiner R, Wermelinger B, Herrmann M, 2015. Natural enemies of bark beetles: predators, parasitoids, pathogens, and nematodes[M]//Vega F, Hofstetter R. Bark Beetles – Biology and Ecology of Native and Invasive Species. London: Academic Press, 247-304.
    [107]
    Wilkes A, 1947. The effects of selective breeding on the laboratory propagation of insect parasites[J]. Proceedings of the Royal Society B, 134(875): 227-245. doi:  10.1098/rspb.1947.0012
    [108]
    Yang Z Q, Wei J R, Wang X Y, 2006. Mass rearing and augmentative releases of the native parasitoid Chouioia cunea for biological control of the introduced fall webworm Hyphantria cunea in China[J]. BioControl, 51: 401-418. doi:  10.1007/s10526-006-9010-z
    [109]
    Zhan Y, Chen S, Wang G, et al, 2021. Biological control technology and application based on agricultural unmanned aerial vehicle (UAV) intelligent delivery of insect natural enemies (Trichogramma) carrier[J]. Pest Management Science, 77(7): 3259-3272. doi:  10.1002/ps.6371
    [110]
    Zhang T P, Wang W, 2023. Identification research of Trichagalma glabrosa insect gall pests based on YOLOv5s[J]. Journal of Electrical and Computer Engineering, 2023: 4011188. doi:  10.1155/2023/4011188
    [111]
    Zhao C, Guo Y, Liu Z, et al, 2021. Temperature and photoperiodic response of diapause induction in Anastatus japonicus, an egg parasitoid of stink bugs[J]. Insects, 12(10): 872. doi:  10.3390/insects12100872
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (129) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return