Volume 4 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
jingfeng Ni, shiqi Lv, zhanyin Wang, chaofan Zhou, xianzhao Liu. Correlation Between Growth and Spatial Structure of Dominant Trees in Larix gmelinii var. principis-rupprechtii Plantations at Different Ages[J]. Terrestrial Ecosystem and Conservation, 2024, 4(1): 1-10. doi: 10.12356/j.2096-8884.2024-0007
Citation: jingfeng Ni, shiqi Lv, zhanyin Wang, chaofan Zhou, xianzhao Liu. Correlation Between Growth and Spatial Structure of Dominant Trees in Larix gmelinii var. principis-rupprechtii Plantations at Different Ages[J]. Terrestrial Ecosystem and Conservation, 2024, 4(1): 1-10. doi: 10.12356/j.2096-8884.2024-0007

Correlation Between Growth and Spatial Structure of Dominant Trees in Larix gmelinii var. principis-rupprechtii Plantations at Different Ages

doi: 10.12356/j.2096-8884.2024-0007
  • Received Date: 2024-01-22
  • Accepted Date: 2024-02-23
  • Available Online: 2024-04-11
  • Publish Date: 2024-02-01
  •   Objective  The growth of dominant trees is closely related to that of their neighboring trees, and exploring the influence of the spatial structure characteristics of the neighboring trees in differently-aged forests on the growth of target trees can provide a theoretical basis for adjusting the spatial structure to stimulate the growth potential of forest stands.   Methods  We selected three Larix gmelinii var. principis-rupprechtii plantation stands in different ages (27, 37 and 46 years), and set up large sample plots of 90 m×60 m, 120 m×120 m and 120 m×120 m, respectively. Took the dominant tree and its 4 nearest neighbor trees as the spatial structural unit, calculated the indexes of uniform angle index, dominance, mingling and crowding of each dominant tree, and analyzed the growth differences of dominant trees among different spatial structures in the stands with different ages.  Results  The average annual increase of diameter at breast height (DBH) and tree height (H) of dominant trees were significantly different among forest ages, and the average annual increase of DBH and H decreased with the forest age rising. In the structural unit of the 27-years stand, the proportion of dominant trees with the random distribution, dominant, zero mixed, and crowded state was the highest. The mean DBH of dominant trees was the greatest at a uniform angle index of 0.50, a dominance of 0, a mingling of 0.75, and a crowding of 1, respectively, and the mean tree height of dominant trees was the greatest at a uniform angle index of 0, a dominance of 0, a mingling of 0.75, and a crowding of 0.75, respectively. In the structural units of the 37-years stand, the dominant trees in random distribution, dominant, zero mixed and very crowded state had the highest proportion. The mean DBH of dominant trees reached the maximum when the uniform angle index was 0.50, the dominance was 0, the mingling was 0.50 and the crowding was 0, respectively, and the mean tree height of dominant trees was maximum when the uniform angle index was 0, the domiance was 0, the mingling was 0.25 and the crowding was 1, respectively. In the structural units of the 46-years stand, the proportion of dominant trees in random distribution, dominant, zero mixed and sparse state was the highest. The mean DBH of dominant trees was the largest when the uniform angle index was 0.50, the dominance was 0 and the crowding was 0, respectively, and the mean tree height of dominant trees was the largest when the uniform angle index was 0, the dominance was 0 and the crowding was 0.  Conclusion  Horizontal distribution pattern, tree species diversity, individual size and crown competition affect the growth characteristics of dominant trees. In the process of succession, the dominant trees developed in the direction of reducing aggregation degree and competition pressure, and appropriately increasing the mixing degree of the dominant trees and ensuring the growth advantage of the dominant trees were conducive to the growth of their DBH and tree height. In the quality selection stage, it is advisable to further select the superior trees with good growth as the target trees, properly tending and felling, optimizing the structural units, and improving the stability of the stands by means of artificial promotion of natural regeneration. In the near natural stage, dead trees should be cleaned up in time, and the spatial structure should be optimized by artificially promoting natural renewal and removing interfering trees.
  • loading
  • [1]
    安慧君, 2004. 阔叶红松林空间结构研究[D]. 北京: 北京林业大学.
    [2]
    柴宗政, 2014. 秦岭中段华北落叶松人工林生长特性及近自然经营技术研究[D]. 杨凌: 西北农林科技大学.
    [3]
    蔡年辉, 许玉兰, 王亚楠, 等, 2019. 基于SSR标记的不同优势等级云南松遗传多样性分析[J]. 植物研究, 39(1): 87-95. doi:  10.7525/j.issn.1673-5102.2019.01.011
    [4]
    范慧涛, 李杨, 谷建才, 2018. 木兰围场油松、华北落叶松混交林空间结构对直径生长的影响[J]. 林业与生态科学, 33(4): 373-380. doi:  10.13320/j.cnki.hjfor.2018.0058
    [5]
    郭跃东, 2009. 庞泉沟保护区天然华北落叶松林单木生长过程研究[J]. 山西林业科技, 38(2): 6-9. doi:  10.3969/j.issn.1007-726X.2009.02.003
    [6]
    惠刚盈, 1999. 角尺度——一个描述林木个体分布格局的结构参数[J]. 林业科学, (1): 39-44. doi:  10.3321/j.issn:1001-7488.1999.01.006
    [7]
    惠刚盈, Klausvon G, Matthias A, 1999. 一个新的林分空间结构参数——大小比数[J]. 林业科学研究, (1): 4-9. doi:  10.3321/j.issn:1001-1498.1999.01.001
    [8]
    惠刚盈, 胡艳波, 2001. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, (1): 23-27. doi:  10.3321/j.issn:1001-1498.2001.01.004
    [9]
    胡艳波, 惠刚盈, 2015. 基于相邻木关系的林木密集程度表达方式研究[J]. 北京林业大学学报, 37(9): 1-8. doi:  10.13332/j.1000--1522.20150125
    [10]
    何静, 李新建, 朱晋梅, 等, 2022. 基于最粗优势木胸径生长的湖南栎类天然林立地质量评价模型[J]. 林业科学, 58(8): 89-98. doi:  10.11707/j.1001-7488.20220809
    [11]
    何静, 2022. 基于混合效应的湖南栎类天然林单木生长模型[D]. 长沙: 中南林业科技大学.
    [12]
    李春明, 2011. 基于纵向数据非线性混合模型的杉木林优势木平均高研究[J]. 林业科学研究, 24(1): 68-73. doi:  10.13275/j.cnki.lykxyj.2011.01.014
    [13]
    李健, 彭鹏, 何怀江, 等, 2017. 采伐对吉林蛟河针阔混交林空间结构的影响[J]. 北京林业大学学报, 39(9): 48-57. doi:  10.13332/j.1000-1522.20170220
    [14]
    林富成, 王维芳, 门秀莉, 等, 2021. 兴安落叶松人工林空间结构优化[J]. 北京林业大学学报, 43(4): 68-76. doi:  10.12171/j.1000-1522.20200228
    [15]
    林文树, 穆丹, 王丽平, 等, 2016. 针阔混交林不同演替阶段表层土壤理化性质与优势林木生长的相关性[J]. 林业科学, 52(5): 17-25. doi:  10.11707/j.1001-7488.20160503
    [16]
    刘国英, 1983. 影响落叶松中龄林优势木生长的因素[J]. 河北农学报, 8(3): 65-66+64. doi:  10.13275/j.cnki.lykxyj.2022.01.001
    [17]
    刘家霖, 满秀玲, 胡悦, 2016. 兴安落叶松天然林不同分化等级林木树干液流对综合环境因子的响应[J]. 林业科学研究, 29(5): 726-734. doi:  10.3969/j.issn.1001-1498.2016.05.015
    [18]
    刘帅, 张江, 李建军, 等, 2017. 森林空间结构分析中基于Voronoi图的样地边缘校正[J]. 林业科学, 53(1): 28-37. doi:  10.11707/j.1001-7488.20170104
    [19]
    娄明华, 杨同辉, 王卫兵, 等, 2023. 四明山黄山松针阔混交林林分空间结构参数多元分布特征[J]. 林业与环境科学, 39(4): 12-20. doi:  10.3969/j.issn.1006-4427.2023.04.002
    [20]
    鲁绍伟, 曹云生, 李福双, 等, 2012. 冀西北山区华北落叶松人工林材积与生物量研究[J]. 林业资源管理, (1): 33-36. doi:  10.3969/j.issn.1002-6622.2012.01.007
    [21]
    陆元昌, 雷相东, 洪玲霞, 等, 2010. 近自然森林经理计划技术体系研究[J]. 西南林学院学报, 30(1): 1-5. doi:  10.3969/j.issn.2095-1914.2010.01.001
    [22]
    孟宪宇, 2011. 测树学 [M]. 北京: 中国林业出版社, 125-160.
    [23]
    梅婷婷, 王传宽, 赵平, 等, 2010. 木荷树干液流的密度特征[J]. 林业科学, 46(1): 40-47. doi:  10.11707/j.1001-7488.20100107
    [24]
    沈国舫, 2001. 森林培育学[M]. 北京: 中国林业出版社.
    [25]
    单凯丽, 2020. 基于气候变化下的杉木人工林优势木单木生长模型研究[D]. 南昌: 江西农业大学.
    [26]
    宋语涵, 张晨, 蔡体久, 等, 2021. 基于Voronoi图的阔叶红松林空间结构特征分析[J]. 北京林业大学学报, 43(1): 20-26. doi:  10.12171/j.1000-1522.20200056
    [27]
    汤孟平, 徐文兵, 陈永刚, 等, 2011. 天目山近自然毛竹林空间结构与生物量的关系[J]. 林业科学, 47(8): 1-6. doi:  10.11707/j.1001-7488.20110801
    [28]
    唐继新, 贾宏炎, 王科, 等, 2019. 密度调控对米老排中龄人工林生长的影响[J]. 南京林业大学学报, 43(1): 45-53. doi:  10.3969/j.issn.1000-2006.201805024
    [29]
    王璞, 马履一, 段劼, 等, 2013. 华北落叶松林平均木—优势木树高模型的研究[J]. 安徽农业科学, 41(21): 8963-8964. doi:  10.3969/j.issn.0517-6611.2013.21.058
    [30]
    汪清, 2021. 马尾松木荷不同比例混交林空间结构特征及其对林分生长的影响[D]. 南昌: 江西农业大学.
    [31]
    项小燕, 吴甘霖, 段仁燕, 等, 2015. 大别山五针松种内和种间竞争强度[J]. 生态学报, 35(2): 389-395. doi:  10.5846/stxb201401130102
    [32]
    谢伊, 杨华, 2022. 长白山天然云冷杉针阔混交林主要树种胸径生长与林分空间结构的关系[J]. 北京林业大学学报, 44(9): 1-11. doi:  10.12171/j.1000−1522.20210280
    [33]
    徐罗, 亢新刚, 郭韦韦, 等, 2016. 天然云冷杉针阔混交林立地质量评价[J]. 北京林业大学学报, 38(5): 11-12. doi:  10.13332/j.1000-1522.20140126
    [34]
    徐卫, 2022. 吉林蛟河针阔混交林内邻域竞争对典型树木生长的影响[D]. 北京: 北京林业大学.
    [35]
    玉宝, 王立明, 2007. 兴安落叶松天然林分级木生长特性分析[J]. 林业科学研究, 20(4): 452-457. doi:  10.3321/j.issn:1001-1498.2007.04.002
    [36]
    岳永杰, 余新晓, 刘彦, 等, 2008. 华北落叶松林不同发育阶段种群分布格局研究[J]. 北京林业大学学报, 30(S2): 171-176. doi:  10.13332/j.1000−1522.2008.s2.038
    [37]
    张震, 刘萍, 丁易, 等, 2010. 天山云杉林不同发育阶段种群分布格局研究[J]. 北京林业大学学报, 32(3): 75-79. doi:  10.13332/j.1000-1522.2010.03.020
    [38]
    张岗岗, 王得祥, 柴宗政, 等, 2014. 秦岭中段华北落叶松人工林空间结构的二元分布特征[J]. 西北农林科技大学学报, 42(9): 33-40. doi:  10.13207/j.cnki.jnwafu.2014.09.014
    [39]
    张彩彩, 李际平, 曹小玉, 等, 2015. 基于加权Voronoi图的杉木生态公益林空间结构分析[J]. 中南林业科技大学学报, 35(4): 19-26. doi:  10.14067/j.cnki.1673-923x.2015.04.004
    [40]
    张咪, 2019. 黄土高原残塬沟壑区刺槐人工林稳定性及优势木分布特征研究[D]. 杨凌: 西北农林科技大学.
    [41]
    张毅锋, 2022. 天目山常绿阔叶林空间结构对林木生长量的影响研究[D]. 杭州: 浙江农林大学.
    [42]
    赵春燕, 李际平, 李建军, 2010. 基于Voronoi图和Delaunay三角网的林分空间结构量化分析[J]. 林业科学, 46(6): 78-84. doi:  10.11707/j.1001-7488.20100612
    [43]
    赵中华, 惠刚盈, 胡艳波, 等, 2014. 基于大小比数的林分空间优势度表达方法及其应用[J]. 北京林业大学学报, 36(1): 78-82.
    [44]
    周超凡, 2023. 云冷杉阔叶混交林空间结构与生长量的定量解析[D]. 北京: 中国林业科学研究院.
    [45]
    Aussenac R, Bergeron Y, Gravel D, et al, 2019. Interactions among trees: a key element in the stabilising effect of species diversity on forest growth[J]. Functional Ecology, 33(2): 360-367. doi:  10.1111/1365-2435.13257
    [46]
    Baskent E Z, Keles S, 2005. Spatial forest lanning: a review[J]. Ecological Modelling, 188(2/4): 145-173. doi:  10.1016/j.ecolmodel.2005.01.059
    [47]
    Fang Z, Bailey R L, 2001. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments[J]. Forest science, 47(3): 287-300. doi:  10.1093/forestscience/47.3.287
    [48]
    Lang A C, Härdtle W, Bruelheide H, et al, 2010. Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China[J]. Forest Ecology and Management, 260(10): 1708-1715. doi:  10.1016/j.foreco.2010.08.015
    [49]
    Pretzsch H, 2020. The course of tree growth. Theory and reality[J]. Forest Ecology and Management, 478: 118508. doi:  10.1016/j.foreco.2020.118508
    [50]
    Vallet P, Perot T, 2016. Tree diversity effect on dominant height in temperate forest[J]. Forest Ecology and Management, 381: 106-114. doi:  10.1016/j.foreco.2016.09.024
    [51]
    Weiner J, Damgaard C, 2006. Size-asymmetric competition and size-asymmetric growth in a spatially explicit zone-of-influence model of plant competition[J]. Ecological Research, 21(5): 707-712. doi:  10.1007/s11284-006-0178-6
    [52]
    Zhao H Y, Kang X G, Guo Z Q, et al, 2012. Species interactions in spruce-fir mixed stands and implications for enrichment planting in the Changbai Mountains, China[J]. Mountain Research and Development, 32(2): 187-196. doi:  10.1659/MRD-JOURNAL-D-11-00125.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (124) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return