Turn off MathJax
Article Contents
Yuxian Peng, Xiaorui Tian, Siwei Li, Liqing Si, Mingyu Wang. A Review of Recent Advances in Lightning Fire Prediction[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0015
Citation: Yuxian Peng, Xiaorui Tian, Siwei Li, Liqing Si, Mingyu Wang. A Review of Recent Advances in Lightning Fire Prediction[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0015

A Review of Recent Advances in Lightning Fire Prediction

doi: 10.12356/j.2096-8884.2024-0015
  • Received Date: 2024-03-01
  • Accepted Date: 2024-04-30
  • Lightning fires are the most common natural fires, which is the main cause for burned areas on global vegetation. The lightning fire occurrence is influenced by various factors, so it is difficult to predict accurately. Its prediction has been gradually applied in wildfire management with the improvement of lightning monitoring capabilities. Statistical regression model and machine learning methods are popularly used in lightning fire prediction, including logical regression, random forest, generalized linear, etc. This paper summarized recent research advances from three aspects, such as drivers, lightning characteristics, and prediction methods, and elaborates on the driving factors and forecasting models. The future researches were proposed incorporating with the current problems in lightning fire prediction. It is necessary to develop prediction models to satisfy various management needs according to fuel characteristics and lightning fire occurrences in different ecological zones, so as to improve the prediction ability of lightning fire occurrence.
  • loading
  • [1]
    郭福涛, 胡海清, 马志海, 等, 2010. 不同模型对拟合大兴安岭林火发生与气象因素关系的适用性[J]. 应用生态学报, 21(1): 159-164. doi:  10.13287/j.1001-9332.2010.0073
    [2]
    郭福涛, 苏漳文, 马祥庆, 等, 2015. 大兴安岭塔河地区雷击火发生驱动因子综合分析[J]. 生态学报, 35(19): 6439-6448. doi:  10.5846/stxb201402140257
    [3]
    梁慧玲, 郭福涛, 苏漳文, 等, 2015. 基于随机森林算法的福建省林火发生主要气象因子分析[J]. 火灾科学, 24(4): 191-200. doi:  10.3969/j.issn.1004-5309.2015.04.02
    [4]
    梁慧玲, 林玉蕊, 杨光, 等, 2016. 基于气象因子的随机森林算法在塔河地区林火预测中的应用[J]. 林业科学, 52(1): 89-98. doi:  10.11707/j.1001-7488.20160111
    [5]
    舒立福, 王明玉, 田晓瑞, 等, 2003. 我国大兴安岭呼中林区雷击火发生火环境研究[J]. 林业科学, 2003(6): 94-99. doi:  10.3321/j.issn:1001-7488.2003.06.016
    [6]
    孙瑜, 史明昌, 彭欢, 等, 2014. 基于 MaxEnt 模型的黑龙江大兴安岭森林雷击火火险预测[J]. 应用生态学报, 25(4): 1100-1106. doi:  10.13287/J.1001-9332.2014.0086
    [7]
    田晓瑞, 舒立福, 赵凤君, 等, 2012. 大兴安岭雷击火发生条件分析[J]. 林业科学, 48(7): 98-103. doi:  10.11707/j.1001-7488.20120716
    [8]
    王会福, 龚立群, 2013. 秦岭林区雷击火的发生和预防[J]. 陕西林业科技, 2013(5): 69-70+72. doi:  10.3969/j.issn.1001-2117.2013.05.020
    [9]
    王金荣, 史明昌, 姜恩来, 等, 2015. 基于 GIS 的黑龙江大兴安岭森林雷击火发生概率预测模型[J]. 安徽农业大学学报, 42(5): 769-774. doi:  10.136100.cnki.i672-352x.20150825.022
    [10]
    张珍, 朱贺, 王光玉, 等, 2022. 混合效应模型在林火发生预测中的适用性[J]. 应用生态学报, 33(6): 1547-1554. doi:  10.13287/j.1001-9332.202206.026
    [11]
    Anderson K, 2002. A model to predict lightning-caused fire occurrences[J]. International journal of wild-land fire, 11(4): 163-172. doi:  10.1071/WF02001
    [12]
    Bond-Lamberty B, Peckham S D, Ahl D E, et al, 2007. Fire as the dominant driver of central Canadian boreal forest carbon balance[J]. Nature, 450(7166): 89-92. doi:  10.1038/nature06272
    [13]
    Butler B W, Finney M, Bradshaw L, et al, 2006. WindWizard: a new tool for fire management decision support[C]//Andrews P L, Butler B W. Fuels management-How to measure success, Portland, Oregon, USA. RMRS-P-41, Ogden, UT: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 787-796.
    [14]
    Canadell J G, Meyer C P, Cook G D, et al, 2021. Multidecadal increase of forest burned area in Australia is linked to climate change[J]. Nature communications, 12(1): 6921. doi:  10.1038/s41467-021-27225-4
    [15]
    Chen F, Du Y, Niu S, et al, 2015. Modeling forest lightning fire occurrence in the Daxinganling Mountains of Northeastern China with Maxent[J]. Forests, 6(5): 1422-1438. doi:  10.3390/f6051422
    [16]
    Costafreda-Aumedes S, Comas C, Vega-Garcia C, 2017. Human-caused fire occurrence modelling in perspective: a review[J]. International Journal of Wild-land Fire, 26(12): 983-998. DOI:  https://doi.org/10.1071/WF17026.
    [17]
    Di Giuseppe F, 2022. The value of probabilistic prediction for lightning ignited fires[J]. Geophysical Research Letters, 49(17): e2022GL099669. doi:  10.1029/2022GL099669
    [18]
    Dissing D, Verbyla D L, 2003. Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation[J]. Canadian Journal of Forest Research, 33(5): 770-782. doi:  10.1139/X02-214
    [19]
    Drohan J, 2012. Predicting Dry Lightning Risk Nationwide[J]. JFSP Briefs, 2012: 139.
    [20]
    Flannigan M D, Wotton B M, 1991. Lightning-ignited forest fires in northwestern Ontario[J]. Canadian Journal of Forest Research, 21(3): 277-287. doi:  10.1139/x91-035
    [21]
    Flannigan M, Stocks B, Turetsky M, et al, 2009. Impacts of climate change on fire activity and fire management in the circumboreal forest[J]. Global change biology, 15(3): 549-560. doi:  10.1111/j.1365-2486.2008.01660.x
    [22]
    Fuquay D M, Taylor A R, Hawe R G, et al, 1972. Lightning discharges that caused fires[J]. Journal of Geophysical Research, 77(12): 2156-2158. doi:  10.1029/jz072i024p06371
    [23]
    Fuquay D M, 1979. A model for predicting lightning fire ignition in wild-land fuels[M]. Inter mountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture.
    [24]
    Gijben M, 2016. A lightning threat index for South Africa using numerical weather prediction data[D]. Pretoria: University of Pretoria.
    [25]
    Guo F, Wang G, Innes J L, et al, 2016. Comparison of six generalized linear models for occurrence of lightning-induced fires in northern Daxing’an Mountains, China[J]. Journal of Forestry Research, 27: 379-388. doi:  10.1007/s11676-015-0176-z
    [26]
    Hessilt T D, Abatzoglou J T, Chen Y, et al, 2022. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America[J]. Environmental Research Letters, 17(5): 054008. doi:  10.1088/1748-9326/ac6311
    [27]
    Hu T, Zhou G, 2014. Drivers of lightning and human-caused fire regimes in the Great Xing’an Mountains[J]. Forest Ecology and Management, 329: 49-58. doi:  10.1016/j.foreco.2014.05.047
    [28]
    Jain P, Coogan S C P, Subramanian S G, et al, 2020. A review of machine learning applications in wildfire science and management[J]. Environmental Reviews, 28(4): 478-505. doi:  10.1139/er-2020-0019
    [29]
    Kourtz P, 1967. Lightning behaviour and lightning fires in Canadian forests[J]. Forestry Branch, 1967: 33.
    [30]
    Larjavaara M, Pennanen J, Tuomi T J, 2005. Lightning that ignites forest fires in Finland[J]. Agricultural and Forest Meteorology, 132(3/4): 171-180. doi:  10.1016/j.agrformet.2005.07.005
    [31]
    Latham D J, 1989. Ignition probabilities of wild-land fuels based on simulated lightning discharges[M]. US Department of Agriculture, Forest Service, Intermountain Research Station.
    [32]
    Mahaney W C, Milner M W, 2011. Lightning-induced mineral/chemical changes in red pine (Pinus resinosa) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 309(3/4): 367-373. DOI: 10.1016/j.palaeo.2011.07.006.
    [33]
    McGuiney E, Shulski M, Wendler G, 2005[2024-03-01]. Alaska lightning climatology and application to wildfire science[C/OL]//Proceedings of the 85th American Meteorological Society Annual Meeting, San Diego Proceedings of Conference on Meteorological Applications of Lightning Data, San Diego, CA, USA. http://ams.confex.com/ams/pdfpapers/85059.pdf.
    [34]
    Milanović S, Marković N, Pamučar D, et al, 2020. Forest fire probability map in eastern Serbia: logistic regression versus random forest method[J]. Forests, 12(1): 5. doi:  10.3390/f12010005
    [35]
    Mostajabi A, Finney D L, Rubinstein M, et al, 2019. Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques[J]. Climate and Atmospheric Science, 2(1): 41. doi:  10.1038/s41612-019-0098-0
    [36]
    Müller M M, Vacik H, Diendorfer G, et al, 2013. Analysis of lightning-induced forest fires in Austria[J]. Theoretical and Applied Climatology, 111: 183-193. doi:  10.1007/s00704-012-0653-7
    [37]
    Müller M M, Vacik H, 2017. Characteristics of lightnings igniting forest fires in Austria[J]. Agricultural and Forest Meteorology, 240: 26-34. doi:  10.1071/WF02001
    [38]
    Nadeem K, Taylor S W, Woolford D G, et al, 2019. Mesoscale spatiotemporal predictive models of daily human-and lightning-caused wildland fire occurrence in British Columbia[J]. International Journal of Wild-land Fire, 29(1): 11-27. doi:  10.1071/WF19058
    [39]
    Nieto H, Aguado I, García M, et al, 2012. Lightning-caused fires in Central Spain: Development of a probability model of occurrence for two Spanish regions[J]. Agricultural and Forest Meteorology, 162: 35-43. doi:  10.1016/j.agrformet.2012.04.002
    [40]
    Ordóñez C, Saavedra A, Rodríguez-Pérez J R, et al, 2012. Using model-based geostatistics to predict lightning-caused wildfires[J]. Environmental Modelling & Software, 29(1): 44-50. doi:  10.1016/j.envsoft.2011.10.004
    [41]
    Petrie M D, Savage N P, Stephen H, 2022. High and low air temperatures and natural wildfire ignitions in the Sierra Nevada Region[J]. Environments, 9(8): 96. doi:  10.3390/environments9080096
    [42]
    Phelps N, Woolford D G, 2021. Comparing calibrated statistical and machine learning methods for wild-land fire occurrence prediction: a case study of human-caused fires in Lac La Biche, Alberta, Canada[J]. International Journal of Wild-land Fire, 30(11): 850-870. doi:  10.1071/WF20139
    [43]
    Pineda N, Montanyà J, Vander Velde O A, 2014. Characteristics of lightning related to wildfire ignitions in Catalonia[J]. Atmospheric Research, 135: 380-387. doi:  10.1016/j.atmosres.2012.07.011
    [44]
    Pineda N, Rigo T, 2017. The rainfall factor in lightning-ignited wildfires in Catalonia[J]. Agricultural and Forest Meteorology, 239: 249-263. doi:  10.1016/j.agrformet.2017.03.016
    [45]
    Preeti T, Kanakaraddi S, Beelagi A, et al, 2021. Forest fire prediction using machine learning techniques[C]. International Conference on Intelligent Technologies (CONIT). IEEE, 1-6.
    [46]
    Read N, Duff T J, Taylor P G, 2018. A lightning-caused wildfire ignition forecasting model for operational use[J]. Agricultural and Forest Meteorology, 253: 233-246. doi:  10.1016/j.agrformet.2018.01.037
    [47]
    Reeve N, Toumi R, 1999. Lightning activity as an indicator of climate change[J]. Quarterly Journal of the Royal Meteorological Society, 125(555): 893-903. doi:  10.1002/qj.49712555507
    [48]
    Rorig M L, McKay S J, Ferguson S A, et al, 2007. Model-generated predictions of dry thunderstorm potential[J]. Journal of Applied Meteorology and Climatology, 46(5): 605-614. doi:  10.1175/JAM2482.1
    [49]
    Schumacher V, Setzer A, Saba M M F, et al, 2022. Characteristics of lightning-caused wildfires in central Brazil in relation to cloud-ground and dry lightning[J]. Agricultural and Forest Meteorology, 312: 108723. doi:  10.1016/j.agrformet.2021.108723
    [50]
    Sevinc V, Kucuk O, Goltas M, 2020. A Bayesian network model for prediction and analysis of possible forest fire causes[J]. Forest Ecology and Management, 457: 117723. doi:  10.1016/j.foreco.2019.117723
    [51]
    Taylor A R, 1969. Tree-bole ignition in superimposed lightning scars[M]. US Department of Agriculture, Forest Service, Intermountain Forest & Range Experiment Station.
    [52]
    Wendler G, Conner J, Moore B, et al, 2011. Climatology of Alaskan wildfires with special emphasis on the extreme year of 2004[J]. Theoretical and Applied Climatology, 104: 459-472. doi:  10.1007/s00704-010-0357-9
    [53]
    Woolford D G, Dean C B, Martell D L, et al, 2014. Lightning-caused forest fire risk in Northwestern Ontario, Canada, is increasing and associated with anomalies in fire weather[J]. Environmetrics, 25(6): 406-416. doi:  10.1002/env.2278
    [54]
    Wotton B M, Martell D L, 2005. A lightning fire occurrence model for Ontario[J]. Canadian Journal of Forest Research, 35(6): 1389-1401. doi:  10.1139/x05-071
    [55]
    Wu Z, He H S, Yang J, et al, 2014. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China[J]. Science of the Total Environment, 493: 472-480. doi:  10.1016/j.scitotenv.2014.06.011
    [56]
    Yusop N, Ahmad M R, Abdullah M, et al, 2019. Cloud to ground lightning observations over the Western Antarctic region[J]. Polar Science, 20: 84-91. doi:  10.1016/j.polar.2019.05.002
    [57]
    Zhang H, Qiao Y, Chen H, et al, 2021. Experimental study on flaming ignition of pine needles by simulated lightning discharge[J]. Fire Safety Journal, 120: 103029. doi:  10.1016/j.firesaf.2020.103029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (20) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return