Turn off MathJax
Article Contents
Xiaodong Niu, Yong Pang, Hailong Xu, Tao Yu. Light Response Characteristics of Canopy Photosynthesis of a Tropical Evergreen Broadleaf Forest[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0016
Citation: Xiaodong Niu, Yong Pang, Hailong Xu, Tao Yu. Light Response Characteristics of Canopy Photosynthesis of a Tropical Evergreen Broadleaf Forest[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0016

Light Response Characteristics of Canopy Photosynthesis of a Tropical Evergreen Broadleaf Forest

doi: 10.12356/j.2096-8884.2024-0016
  • Received Date: 2024-03-02
  • Accepted Date: 2024-04-23
  •   Objective  To study the light response characteristics of canopy photosynthesis in a tropical evergreen broadleaf forest in Yunnan Province.  Methods  Based on the flux tower data observed from March 2023 to February 2024 in a tropical evergreen broadleaf forest in Puwen Town, Yunnan Province, the Michaelis-Menten equation was used to fit the three photosynthetic parameters of the ecosystems with the time windows of 1 month. And the correlation analysis between ecosystem photosynthetic parameters and environmental factors in corresponding time scale was carried out.   Results  The apparent initial light use efficiency (ɑ) and dark ecosystem respiration (Rd) showed similar seasonal variation characteristics, with the maximum value in October and the minimum value in February. The maximum photosynthesis rate (Pmax) from March to May was low and had no obvious change in other months. The environmental factors that are most correlated with the seasonal variations of ɑ, Rd and Pmax were wind speed, relative air humidity and vapor pressure deficit, respectively. Canopy conductance also had an apparent effect on the seasonal variation of Rd and Pmax.  Conclusion  Three photosynthetic parameters of the tropical evergreen broadleaf forest showed obvious seasonal variations. Rather than radiation and temperature, wind speed and water conditions had greater effects on the seasonal variations of photosynthetic parameters.
  • loading
  • [1]
    费学海, 2018. 云南典型森林生态系统碳交换及其对气候变化响应研究[D]. 北京: 中国科学院大学.
    [2]
    景跃波, 2015. 云南热区西南桦人工林丛枝菌根研究[D]. 昆明: 云南大学.
    [3]
    林雍, 陈智, 杨萌, 等, 2022. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 46(12): 1461-1472. doi:  10.17521/cjpe.2021.0426
    [4]
    朴世龙, 何悦, 王旭辉, 等, 2022. 中国陆地生态系统碳汇估算: 方法、进展、展望[J]. 中国科学(地球科学), 52(6): 1010-1020. doi:  10.1360/SSTe-2021-0197
    [5]
    起德花, 费学海, 宋清海, 等, 2021. 2009–2013年哀牢山亚热带常绿阔叶林碳水通量观测数据集[J/OL]. 中国科学数据, 6(1): 87-97. http://www.dx. doi.org/10.11922/sciencedb.00186. DOI:  10.11922/csdata.2020.0089.zh.
    [6]
    宋清海, 张一平, 谭正洪, 等, 2010. 热带季节雨林生态系统净光合作用特征及其影响因子[J]. 应用生态学报, 21(12): 3007-3014. doi:  10.13287/j.1001-9332.2010.0463
    [7]
    肖文发, 朱建华, 曾立雄, 等, 2023. 森林碳汇助力碳中和的几点认识[J]. 林业科学, 59(3): 1-11. doi:  10.11707/j.1001-7488.LYKX20220681
    [8]
    许丽霞, 江洪, 张敏霞, 等, 2017. 安吉毛竹林生态系统光合作用特征及其环境影响因子研究[J]. 江西农业大学学报, 39(5): 928-937. doi:  10.13836/j.jjau.2017120
    [9]
    万家鸣, 律江, 石云, 等, 2023. 散射辐射对杨树人工林生态系统总初级生产力的影响[J]. 林业科学, 59(5): 1-10. doi:  10.11707/j.1001-7488.LYKX20230249
    [10]
    周立国, 宋清海, 张一平, 等, 2017. 4种森林生态系统光合作用光响应参数特征的比较[J]. 生态学杂志, 36(7): 1815-1824. doi:  10.13292/j.1000-4890.201707.038
    [11]
    朱苑, 刘帆, 王传宽, 等, 2020. 帽儿山温带落叶阔叶林净生态系统碳交换的日变化及光响应特征[J]. 应用生态学报, 31(1): 72-82. doi:  10.13287/j.1001-9332.202001.040
    [12]
    Bao X Y, Li Z G, Xie F T, 2019. Environmental influences on light response parameters of net carbon exchange in two rotation croplands on the North China Plain[J]. Scientific Reports, 9(1): 18702. doi:  10.1038/s41598-019-55340-2
    [13]
    Chen S N, Wei W, Huang Y, 2024. Biophysical controls on canopy transpiration of Pinus tabulaeformis under different soil moisture conditions in the Loess Plateau of China[J]. Journal of Hydrology, 631: 130799. doi:  10.1016/j.jhydrol.2024.130799
    [14]
    Chen W N, Wang S, Wang J S, et al, 2023. Evidence for widespread thermal optimality of ecosystem respiration[J]. Nature Ecology & Evolution, 7(9): 1379-1387. doi:  10.1038/s41559-023-02121-w
    [15]
    Falge E, Baldocchi D, Olson R, et al, 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange[J]. Agricultural and Forest Meteorology, 107(1): 43-69. doi:  10.1016/S0168-1923(00)00225-2
    [16]
    Foken T, Göockede M, Mauder M, et al, 2006. Post-field data quality control[M]//Handbook of Micrometeorology. Dordrecht: Kluwer Academic Publishers, 181-208. DOI:  10.1007/1-4020-2265-4_9
    [17]
    Gilmanov T G, Aires L, Barcza Z, et al, 2020. Productivity, respiration, and light response parameters of world grassland and agroecosystems derived from flux tower measurements[J]. Rangeland Ecology & Management, 63(1): 16-39. doi:  10.2111/REM-D-09-00072.1
    [18]
    Kaimal J C, Wyngaard J C, Izumi Y, et al, 1972. Spectral characteristics of surface layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 98: 563-589. doi:  10.1002/qj.49709841707
    [19]
    Lin Y, Chen Z, Yu G R, et al, 2024. Spatial patterns of light response parameters and their regulation on gross primary productivity in China[J]. Agricultural and Forest Meteorology, 345: 109833. doi:  10.1016/j.agrformet.2023.109833
    [20]
    Niu X D, Chen Z C, Pang Y, 2023. Soil moisture shapes the environmental control mechanism on canopy conductance in a natural oak forest[J]. Science of the Total Environment, 857(1): 159363. doi:  10.1016/j.scitotenv.2022.159363
    [21]
    Reichstein M, Falge E, Baldocchi D, et al, 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm[J]. Global Change Biology, 11(9): 1424-1439. doi:  10.1111/j.1365-2486.2005.001002.x
    [22]
    Song Q H, Fei X H, Zhang Y P, et al, 2017. Snow damage strongly reduces the strength of the carbon sink in a primary subtropical evergreen broadleaved forest[J]. Environmental Research Letters, 12(10): 104014. doi:  10.1088/1748-9326/aa82c4
    [23]
    Song X Z, Chen X F, Zhou G M, 2017. Observed high and persistent carbon uptake by Moso bamboo forests and its response to environmental drivers[J]. Agricultural and Forest Meteorology, 247: 467-475. doi:  10.1016/j.agrformet.2017.09.001
    [24]
    Tanner C B, Thurtell G W, 1969. Anemoclinometer measurements of Reynolds stress and heat transport in the atmospheric surface layer[D]. Madison: University of Wisconsin.
    [25]
    Tan Z H, Zhang Y P, Schaefer D, et al, 2011. An old-growth subtropical Asian evergreen forest as a large carbon sink[J]. Atmospheric Environment, 45(8): 1548-1554. doi:  10.1016/j.atmosenv.2010.12.041
    [26]
    Wang B, Wang Z H, Wang C Z, 2021. Field evidence reveals conservative water use of poplar saplings under high aerosol conditions[J]. The Journal of Ecology, 109(5): 2190-2202. doi:  10.1111/1365-2745.13633
    [27]
    Wang J, Feng L, Palmer P, et al, 2020. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 586(7831): 720-723. doi:  10.1038/s41586-020-2849-9
    [28]
    Wang Z H, Wang C Z, Wang X, et al, 2022. Aerosol pollution alters the diurnal dynamics of sun and shade leaf photosynthesis through different mechanisms[J]. Plant, Cell & Environment, 45(10): 2943-2953. DOI:  10.1111/pce.14411
    [29]
    Xiao X M, Zhang Q Y, Braswell B, et al, 2004. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data[J]. Remote Sensing of Environment, 91(2): 256-270. doi:  10.1016/j.rse.2004.03.010
    [30]
    Xu X J, Du H Q, Zhou G M, et al, 2016. Eddy covariance analysis of the implications of drought on the carbon fluxes of Moso bamboo forest in southeastern China[J]. Trees, 30(5): 1807-1820. doi:  10.1007/s00468-016-1414-5
    [31]
    Xu M J, Wang Q Y, Yang F T, et al, 2022. The responses of photosynthetic light response parameters to temperature among different seasons in a coniferous plantation of subtropical China[J]. Ecological Indicators, 145: 109595. doi:  10.1016/j.ecolind.2022.109595
    [32]
    You C H, Wang Y B, Tan X R, et al, 2022. Seasonal and interannual variations of ecosystem photosynthetic characteristics in a semi-arid grassland of Northern China[J]. Journal of Plant Ecology, 15(5): 961-976. doi:  10.1093/jpe/rtac065
    [33]
    Zhang L M, Yu G R, Sun X M, et al, 2006. Seasonal variations of ecosystem apparent quantum yield (α) and maximum photosynthesis rate (Pmax) of different forest ecosystems in China[J]. Agricultural and Forest Meteorology, 137(3/4): 176-187. doi:  10.1016/j.agrformet.2006.02.006
    [34]
    Zhang P, Chen S P, Zhang W L, et al, 2012. Biophysical regulations of NEE light response in a steppe and a cropland in Inner Mongolia[J]. Journal of Plant Ecology, 5(2): 238-248. doi:  10.1093/jpe/rtr017
    [35]
    Zhang Y P, Tan Z H, Song Q H, et al, 2010. Respiration controls the unexpected seasonal pattern of carbon flux in an Asian tropical rain forest[J]. Atmospheric Environment, 44(32): 3886-3893. doi:  10.1016/j.atmosenv.2010.07.027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (23) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return