Turn off MathJax
Article Contents
xiangyang Xu, zedong Chen, xiaoping Zhang, guibin Gao, zhiyuan Huang, zhizhuang Wu. Characterization of Changes in Soil Organic Carbon Fractions of Phyllostachys edulis Interplanted with Sarcandra glabra[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0020
Citation: xiangyang Xu, zedong Chen, xiaoping Zhang, guibin Gao, zhiyuan Huang, zhizhuang Wu. Characterization of Changes in Soil Organic Carbon Fractions of Phyllostachys edulis Interplanted with Sarcandra glabra[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0020

Characterization of Changes in Soil Organic Carbon Fractions of Phyllostachys edulis Interplanted with Sarcandra glabra

doi: 10.12356/j.2096-8884.2024-0020
  • Received Date: 2024-03-02
  • Accepted Date: 2024-04-23
  •   Objective  The changes of soil organic carbon content and carbon pool management index caused by intercropping Sarcandra glabra under Phyllostachys edulis forest were investigated to clarify the disturbance degree of organic carbon stability of bamboo ecosystem by composite management, and provide scientific basis for formulating sustainable management strategy with high comprehensive benefits.  Method  The surface soil (0-20cm) of intercropping Sarcandra glabra under Phyllostachys edulis was taken as the study object (SG), and the surface soil of adjacent pure Phyllostachys edulis was set as the control (CK). Soil organic carbon (SOC), easily oxidizable carbon (EOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), Fe-Al-bound organic carbon (Fe(Al)-SOC) and Ca-bound organic carbon (Ca-SOC) contents were analyzed, the carbon pool management index was quantified.   Result  Compared with pure Phyllostachys edulis forest, intercropping Sarcandra glabra soil organic carbon content increased by 51.3%, and the contents of soil active organic carbon components (EOC, MBC, DOC) and their proportion to soil organic carbon increased significantly, the contents of soil stable organic carbon fractions (Fe(Al)-SOC and Ca-SOC) significantly increased, while their proportions to soil organic carbon significantly decreased. In addition, compared with pure Phyllostachys edulis forest, intercropping Sarcandra glabrasoil carbon pool activity (L) and carbon pool management index (CPMI) significantly increased, while coefficient of oxidative stability (Kos) significantly decreased. RDA analysis showed that soil bulk density (BD) was a key environmental factor affecting soil organic carbon and its components. The results of correlation analysis showed that bulk density was significantly negatively correlated with soil organic carbon and its components, and available nitrogen (AN) and available phosphorus (AP) were significantly positively correlated with soil organic carbon and its components  Conclusion  Intercropping Sarcandra glabrasoil under Phyllostachys edulis forest increased the content of soil organic carbon and its components, increased the relative content of active organic carbon components, and decreased the relative content of stable organic carbon components, which was conducive to the regeneration and cycling of soil carbon pool.
  • loading
  • [1]
    曹小青, 2020. 不同林分白芨复合模式对土壤理化性质及微生物群落结构的影响[D]. 合肥: 安徽农业大学,
    [2]
    程路芸, 温星, 马丹丹, 等, 2017. 毛竹快速生长过程中碳水化合物的时空变化[J]. 浙江农林大学学报, 34(2): 261-267. doi:  10.11833/j.issn.2095-0756
    [3]
    顾晓娟, 于耀泓, 刘悦, 等, 2023. 华南典型人工林对土壤易氧化有机碳的影响[J]. 森林与环境学报, 43(2): 145-151.
    [4]
    郭宝华, 范少辉, 杜满义, 等, 2014. 土地利用方式对土壤活性碳库和碳库管理指数的影响[J]. 生态学杂志, 33(3): 723-728.
    [5]
    黄倩, 吴靖霆, 陈杰, 等, 2015. 土壤吸附可溶性有机碳研究进展[J]. 土壤, 47(3): 446-452.
    [6]
    景建生, 刘子琦, 罗鼎, 等, 2020. 喀斯特洼地土壤有机碳分布特征及影响因素[J]. 森林与环境学报, 40(2): 133-139.
    [7]
    李晨晨, 周再知, 梁坤南, 等, 2018. 不同林药复合经营模式对杉木生态公益林土壤理化性质的改良效果[J]. 浙江农林大学学报, 35(1): 51-59. doi:  10.11833/j.issn.2095-0756
    [8]
    李俊超, 靳静静, 2017. 农田土壤有机碳储量的影响因素研究[J]. 农业与技术, 37(8): 53-54
    [9]
    李灵, 张玉, 王利宝, 等, 2007. 不同林地土壤微生物生物量垂直分布及相关性分析[J]. 中南林业科技大学学报, (2): 52-56. doi:  10.3969/j.issn.1673-923X
    [10]
    李梦寻, 王冬梅, 任远, 等, 2018. 不同干湿交替频率对土壤速效养分、水溶性有机碳的影响[J]. 生态学报, 38(5): 1542-1549.
    [11]
    李式杰, 2021. 不同林下种植经营模式对土壤质量的影响[D]. 南昌, 江西农业大学.
    [12]
    刘淼, 蔡春菊, 赵建诚, 等, 2022. 毛竹林下套种长裙竹荪对林分生长及土壤养分的影响[J]. 森林与环境学报, 42(2): 158-165.
    [13]
    聂小英, 郑东升, 陈阳峰, 等, 2020. 草珊瑚耐阴特性与林下间套作栽培模式研究进展[J]. 作物研究, 34(6): 605-608.
    [14]
    饶林梅, 2016. 毛竹林郁闭度对林下套种草珊瑚生长的影响[J]. 林业勘察设计, 36(1): 54-56.
    [15]
    沈宏, 曹志洪, 胡正义, 1999. 土壤活性有机碳的表征及其生态效应[J]. 生态学杂志, (3): 33-39. doi:  10.3321/j.issn:1000-4890
    [16]
    万猛, 田大伦, 樊巍, 2009. 豫东平原杨-农复合系统凋落物的数量、组成及其动态[J]. 生态学报, 29(5): 2507-2513. doi:  10.3321/j.issn:1000-0933.2009.05.038
    [17]
    王勤, 孙梦瑶, 遆建航, 等, 2020. 毛竹-多花黄精复合经营模式对土壤理化特性的影响[J]. 生态科学, 39(6): 54-59.
    [18]
    王朔林, 王改兰, 赵旭, 等, 2015. 长期施肥对栗褐土有机碳含量及其组分的影响[J]. 植物营养与肥料学报, 21(1): 104-111. doi:  10.11674/zwyf.2015.0111
    [19]
    吴彬, 徐晶晶, 成艳红, 等, 2021. 石灰施用对酸性土壤矿物结合有机碳形成的影响[J]. 中国农学通报, 37(21): 98-105. doi:  10.11924/j.issn.1000-6850.casb2020-0558
    [20]
    徐薇薇, 乔木, 2014. 干旱区土壤有机碳含量与土壤理化性质相关分析[J]. 中国沙漠, 34(6): 1558-1561 doi:  10.7522/j.issn.1000-694X.2013.00311
    [21]
    许梦璐, 吴炜, 颜铮明, 等, 2020. 滨海滩涂不同土地利用类型土壤活性有机碳含量与垂直分布[J]. 南京林业大学学报(自然科学版, 44(4): 167-175. doi:  10.3969/j.issn.1000-2006.202001021
    [22]
    杨元合, 石岳, 孙文娟, 等, 2022. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学: 生命科学, 52(4): 534-574.
    [23]
    张琦, 王淑兰, 王浩, 等, 2020. 深松与免耕频次对黄土旱塬春玉米田土壤团聚体与土壤碳库的影响[J]. 中国农业科学, 53(14): 2840-2851. doi:  10.3864/j.issn.0578-1752
    [24]
    张文敏, 吴明, 王蒙, 等, 2014. 杭州湾湿地不同植被类型下土壤有机碳及其组分分布特征[J]. 土壤学报, 51(6): 1351-1360.
    [25]
    赵斯, 赵雨森, 王林, 等, 2010. 东北黑土区农林复合土壤效应[J]. 东北林业大学学报, 38(5): 68-70. doi:  10.3969/j.issn.1000-5382
    [26]
    周国模, 2006. 毛竹林生态系统中碳储量、固定及其分配与分布的研究[D]. 杭州: 浙江大学.
    [27]
    Bayala J, Ouedraogo S J, Teklehaimanot Z, 2007. Rejuvenating indigenous trees in agroforestry parkland systems for better fruit production using crown pruning[J]. Agroforestry Systems, 72(3): 187-194. doi:  10.1007/s10457-007-9099-9
    [28]
    Blair N, Faulkner R D, Till A R, et al, 2006. Long-term management impacts on soil C, N and physical fertility[J]. Soil and Tillage Research 91(1/2): 30-38.
    [29]
    Bol R, Poirier N, Balesdent J, et al, 2009. Molecular turnover time of soil organic matter in particle‐size fractions of an arable soil[J]. Rapid Communications in Mass Spectrometry, 23(16): 2551-2558. doi:  10.1002/rcm.4124
    [30]
    Bray R H, 1945. Determination of total organic and available forms of phosphorus in soils[J]. Soil, (59): 39-45.
    [31]
    Demisie W, Liu Z, Zhang M, et al, 2014. Effect of biochar on carbon fractions and enzyme activity of red soil[J]. Catena, 121: 214-221. doi:  10.1016/j.catena.2014.05.020
    [32]
    Díaz-Pinés E, Rubio A, Van Miegroet H, et al, 2011. Does tree species composition control soil organic carbon pools in Mediterranean mountain forests?[J]. Forest Ecology and Management, 262(10): 1895-1904. doi:  10.1016/j.foreco.2011.02.004
    [33]
    Hu Y, Wang S L, Zeng D, 2006. Effects of single Chinese fir and mixed leaf litters on soil chemical, microbial properties and soil enzyme activities[J]. Plant Soil, 282(1/2): 379-386. doi:  10.1007/s11104-006-0004-5
    [34]
    Huang Z Y, Li Q L, Gai X, et al, 2022. Effects of on- and off-year management practices on the soil organic C fractions and microbial community in a Moso bamboo (Phyllostachys edulis) forest in subtropical China[J]. Frontiers in Plant Science, (13): 1020344. doi:  10.3389/fpls.2022.1020344
    [35]
    Lavallee J M, Soong J L, Cotrufo M F, 2020. Conceptualizing soil organic matter into particulate and mineral‐associated forms to address global change in the 21st century[J]. Global Change Biology, 26(1): 261-273. doi:  10.1111/gcb.14859
    [36]
    Lin Han, H Tu, Wu C Z, et al, 2012. Monthly variation in litterfall and the amount of nutrients in an Aleurites montana plantation[J]. Forestry Studies in China, 14(1): 30-35. doi:  10.1007/s11632-012-0109-2
    [37]
    Peng Y Y, Thomas S C, Tian D L, 2008. Forest management and soil respiration: implications for carbon sequestration[J]. Environmental Reviews, 16(9): 93-111. doi:  10.1139/A08-003
    [38]
    Qiu H, Liu J, Boorboori M R, et al, 2023. Effect of biochar application rate on changes in soil labile organic carbon fractions and the association between bacterial community assembly and carbon metabolism with time[J]. Science of the Total Environment, 855: 158876. doi:  10.1016/j.scitotenv.2022.158876
    [39]
    Rasmussen C, Heckman K, Wieder W R, et al, 2018. Beyond clay: towards an improved set of variables for predicting soil organic matter content[J]. Biogeochemistry, 137: 297-306. doi:  10.1007/s10533-018-0424-3
    [40]
    Sun B, Roberts D M, Dennis P G, et al, 2014. Microbial properties and nitrogen contents of arable soils under different tillage regimes[J]. Soil Use and Management, 30(1): 152-159. doi:  10.1111/sum.12089
    [41]
    Xu H, Huang X, Chen J, et al, 2023. Intercropping with legumes alleviates soil N limitation but aggravates P limitation in a degraded agroecosystem as shown by ecoenzymatic stoichiometry[J]. Soil Biology and Biochemistry, 187: 109210. doi:  10.1016/j.soilbio.2023.109210
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (12) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return