Turn off MathJax
Article Contents
Wenhai Yang, Zhilian Yang, Yanhui Wang, Xiangdong Li, Zhengan Wang, Wei Chen. Microclimate Features of Larix principis-rupprechtii Plantations in the Liupan Mountains of Northwestern China[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0026
Citation: Wenhai Yang, Zhilian Yang, Yanhui Wang, Xiangdong Li, Zhengan Wang, Wei Chen. Microclimate Features of Larix principis-rupprechtii Plantations in the Liupan Mountains of Northwestern China[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2024-0026

Microclimate Features of Larix principis-rupprechtii Plantations in the Liupan Mountains of Northwestern China

doi: 10.12356/j.2096-8884.2024-0026
  • Received Date: 2024-02-18
  • Rev Recd Date: 2024-04-25
  •   Objective  The microclimate features under forest canopy (UFC) and in forest gap (IFG) of Larix principis-rupprechtii plantations were monitored to provide a scientific basis for understanding the microclimate regulation effect of forest and for guiding the forest management promoting the regeneration of understory trees and the optimal use of multiple forest ecosystem services.  Methods  Microclimate monitoring plots of UFC (with an age of 40 years and a canopy density of 0.52) and IFG (with an area 750 m2) were established in the southern sub-humid area of the Liupan Mountains, Ningxia, Northwestern China. Meteorological parameters and the soil temperature and moisture at 10 cm depth were monitored by automatic weather stations for one year from December 2022. The meteorological data in open field (IOF) were obtained by interpolating the standard meteorological station data according to altitude, as a comparison basis.   Results  Compared with the habitat of IOF, the habitats of UFC and IFG showed obvious microclimate regulation effects, which were manifested in: 1) the annual means of cumulative value of solar radiation (MJ/m2) was UFC (4.53) < IFG (8.87) < IOF (13.99), indicating that the values of UFC and IFG were decreased to 0.32 and 0.63 times of that of IOF. The difference of monthly mean solar radiation accumulation value between the habitats of IOF and UFC or IFG was greater in growing season than in non-growing season. 2) The annual mean air temperature (℃) was UFC (7.2) < IOF (7.5) < IFG (7.8). The diurnal air temperature range (℃) was UFC (6.1) < IFG (6.3) < IOF (8.0), indicating a more gentle variation of air temperature of UFC and IFG. The difference of monthly mean air temperature between the habitat of UFC or IFG and IOF was smaller in growing season than in non-growing season. 3) The annual means of relative air humidity (%) was UFC (69.1) > IFG (64.7) > IOF (62.5), indicating an increase of 6.6% and 2.2% by the habitats of UFC and IFG compared with that of IOF. And the increase amplitude of air humidity was greater in growing season than in non-growing season. 4) The annual mean soil temperature (℃) at the depth of 10 cm was UFC (6.8) < IFG (8.8) < IOF (9.1), indicating a decrease of 2.3 ℃ and 0.3 ℃ at the habitats of UFC and IFG compared with that of IOF. The diurnal range of soil temperature (℃) was UFC (0.7) < IFG (1.5) < IOF (4.5); The soil temperature was decreased at the habitats of UFC and IFG in growing season but increased in non-growing season compared with that of IOF. 5) The annual mean soil moisture (%) at the depth of 10 cm was UFC (24.4) < IFG (29.8) < IOF (33.8), indicating an decrease of 9.4% and 4.0% at the habitats of UFC and IFG compared with that of IOF. And the effect of decreasing soil moisture of UFC and IFG was lower in the middle of growing season.   Conclusion  The microclimate regulation effect of the Larix principis-rupprechtii plantations is obvious, and it is greater in growing season than in non-growing season. Compared with open field, the solar radiation, soil temperature and soil moisture were significantly decreased at the habitats of under forest canopy and in forest gap, but the air humidity was significantly increased, and the variation amplitude of each index was reduced and the peak time was adjusted, has a good regulating and buffering effect on air temperature.
  • loading
  • [1]
    常猛, 崔莉娜, 葛波, 等, 2020. 长三角地区麻栎林生长季小气候调节效应研究[J]. 西北林学院学报, 35(5): 16-22. doi:  10.3969/j.issn.1001-7461.2020.05.03
    [2]
    陈鹏娟, 2021. 干旱半干旱地区植被恢复类型对林地小气候的影响研究[J]. 中国水土保持, 2021(5): 45-47. doi:  10.3969/j.issn.1000-0941.2021.05.017
    [3]
    陈仕友, 姜春前, 王辉, 等, 2021. 近30年林窗研究进展与展望——基于文献计量分析[J]. 陆地生态系统与保护学报, 1(2): 68-79. doi:  10.12356/j.2096-8884.2021-0028
    [4]
    陈文盛, 丁慧慧, 李江荣, 2022. 森林小气候特征研究进展[J]. 湖南生态科学学报, 9(3): 89-95. doi:  10.3969/j.issn.2095-7300.2022.03.012
    [5]
    戴薛, 刘学全, 付甜, 等, 2023. 湖北大巴山针阔混交林森林小气候特征[J]. 湖北林业科技, 52(6): 8-12.
    [6]
    郜慧萍, 2020. 油松中龄林的小气候效应研究[J]. 山西林业科技, 49(1): 40-42. doi:  10.3969/j.issn.1007-726X.2020.01.013
    [7]
    郭晋平, 李海波, 刘宁, 等, 2009. 华北落叶松和白杄幼苗对光照和竞争响应的差异比较[J]. 林业科学, 45(2): 53-59. doi:  10.3321/j.issn:1001-7488.2009.02.010
    [8]
    郭永盛, 2008. 内蒙古大青山中段水源涵养林功能机理与经营模式[D]. 北京: 北京林业大学.
    [9]
    郭豫宾, 张船红, 2022. 基于Landsat 8的川西复杂地形太阳辐射估算研究[J]. 高原山地气象研究, 42(4): 104-109. doi:  10.3969/j.issn.1674-2184.2022.04.014
    [10]
    郝帅, 刘萍, 张毓涛, 等, 2007. 天山中段天山云杉林森林小气候特征研究[J]. 新疆农业大学学报, 30(1): 48-52. doi:  10.3969/j.issn.1007-8614.2007.01.012
    [11]
    江爱良, 1958. 华南植胶区防护林气象效能的试验考察报告[M]. 北京: 科学出版社.
    [12]
    李怀珠, 1999. 论宁夏六盘山地区针阔混交水源涵养林工程建设现状及发展规划[J]. 宁夏农林科技, 3: 22-24.
    [13]
    李进, 石晓东, 高润梅, 等, 2020. 华北落叶松天然次生林更新及影响因素[J]. 森林与环境学报, 40(6): 588-596.
    [14]
    李羽翎, 张广奇, 2021. 林窗定义及林窗特征测定方法研究进展[J]. 世界林业研究, 34(5): 58-63.
    [15]
    李羽翎, 张广奇, 杨婷婷, 等, 2022. 茂兰喀斯特森林林窗下木本植物多样性及其驱动力[J]. 生态学杂志, 41(3): 444-453.
    [16]
    刘海英, 蒋仲龙, 姚任图, 等, 2022. 木荷林窗微环境特征及幼苗更新研究[J]. 西南林业大学学报(自然科学), 42(5): 56-63.
    [17]
    刘江丽, 吕倩, 刘俊杰, 等, 2022. 林窗尺度对马尾松人工林林下灌草层优势种生态位的早期影响[J]. 西北植物学报, 42(2): 312-325. doi:  10.7606/j.issn.1000-4025.2022.02.0312
    [18]
    刘士玲, 杨保国, 郑路, 等, 2019. 马尾松人工林小气候调节效应[J]. 中南林业科技大学学报, 39(2): 15-20.
    [19]
    刘学勤, 梁凤玉, 王丽生, 等, 1988. 华北落叶松人工林小气候特征的初步观测[J]. 山西林业科技, 4: 6-10.
    [20]
    刘志和, 邱让建, 刘春伟, 2023. 基于日照时数的太阳辐射通用模型提升参考作物蒸散估算精度研究[J]. 节水灌溉, 2023: 80-88. doi:  10.12396/jsgg.2022261
    [21]
    马和平, 石玉龙, 赵文茵, 等, 2023. 西藏色季拉山暗针叶林苔藓多样性及林窗干扰的影响[J]. 热带亚热带植物学报, 31(4): 503-509.
    [22]
    彭巍, 李明文, 王慧, 等, 2020. 森林小气候国内外研究进展[J]. 防护林科技, 7: 45-47.
    [23]
    曲潇琳, 龙怀玉, 曹祥会, 等, 2019. 宁夏山地土壤的发育规律及系统分类研究[J]. 土壤学报, 56(1): 65-77. doi:  10.11766/trxb201802070053
    [24]
    佘萍, 曹兵, 王彦辉, 等, 2021. 华北落叶松人工林地表处理措施对当年幼苗密度的影响[J]. 林业科学, 57(3): 18-28.
    [25]
    孙金伟, 吴家兵, 关德新, 等, 2011. 森林与空旷地空气温湿度及土壤温度的长期对比研究[J]. 生态学杂志, 30(12): 2685-2691.
    [26]
    孙双红, 朱宾宾, 景璐, 等, 2022. 林窗干扰对沙地樟子松人工林更新特征的影响[J]. 东北林业大学学报, 50(2): 6-10. doi:  10.3969/j.issn.1000-5382.2022.02.002
    [27]
    孙双红, 朱宾宾, 鲁海涛, 等, 2023. 林窗对呼伦贝尔沙地樟子松人工林物种多样性的影响[J]. 森林工程, 39(2): 47-56. doi:  10.3969/j.issn.1006-8023.2023.02.006
    [28]
    王伟, 2021. 马尾松丝栗栲复层林小气候观测与分析[J]. 安徽农学通报, 27(17): 82-84. doi:  10.3969/j.issn.1007-7731.2021.17.028
    [29]
    肖金香, 2014. 气象学[M]. 北京: 中国林业出版社.
    [30]
    杨铭伦, 张文革, 张旭, 等, 2021. 西天山森林小气候梯度特征[J]. 林业科技通讯, 2021(3): 14-18.
    [31]
    杨勤, 梁旭, 赵光平, 等, 2009, 宁夏太阳辐射逐日、月、年总量的变化特征. 干旱区研究, 26(3): 413-423.
    [32]
    杨占彪, 李圣男, 金红喜, 2011. 六盘山林区华北落叶松天然更新影响因素研究[J]. 江苏农业科学, 39(3): 206-209. doi:  10.3969/j.issn.1002-1302.2011.03.082
    [33]
    张一平, 窦军霞, 马友鑫, 等, 2001. 热带季节雨林林窗不同热力作用面的热力特征[J]. 中南林学院学报, 21(4): 68-72.
    [34]
    朱教君, 刘足根, 王贺新, 2008. 辽东山区长白落叶松人工林天然更新障碍分析[J]. 应用生态学报, 19(4): 695-703.
    [35]
    Davies-Colley R J, Payne G W, Van Elswijk M, 2000. Microclimate gradients across a forest edge[J]. New Zealand Journal of Ecology, 24(2): 111-121.
    [36]
    De Frenne P, Lenoir J, Luoto M, et al, 2021. Forest microclimates and climate change: Importance, drivers and future research agenda[J]. Global Change Biology, 27(11): 2279-2297. doi:  10.1111/gcb.15569
    [37]
    Hardwick S R, Toumi R, Pfeifer M, et al, 2015. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate[J]. Agricultural and Forest Meteorology, 201: 187-195. doi:  10.1016/j.agrformet.2014.11.010
    [38]
    Li J, Yu P, Wan Y, et al, 2023, Effects of topography and social position on the solar radiation of individual trees on a hillslope in Northwest China. Forests [J]. Forests, 14(3): 561. doi:  10.3390/f14030561.
    [39]
    Liu Z, Wang Y, Tian A, et al, 2018. Modeling the response of daily evapotranspiration and its components of a larch plantation to the variation of weather, soil moisture, and canopy leaf area index[J]. Journal of Geophysical Research: Atmospheres, 123(14): 7354-7374. doi:  10.1029/2018JD028384
    [40]
    Muscolo A, Bagnato S, Sidari M, et al, 2012. A review of the roles of forest canopy gaps[J]. Journal of Forestry Research, 25: 725-736.
    [41]
    Tian A, Wang Y, Webb A A, et al, 2019. Partitioning the causes of spatiotemporal variation in the sunny day sap flux density of a larch plantation on a hillslope in northwest China[J]. Journal of Hydrology, 571: 503-515. doi:  10.1016/j.jhydrol.2019.02.004
    [42]
    von Arx G, Dobbertin M, Rebetez M, 2012. Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland[J]. Agricultural and Forest Meteorology, 166: 144-155.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (48) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return