留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小兴安岭林火动态研究

田晓瑞 宗学政 王志成 刘嘉雷

田晓瑞, 宗学政, 王志成, 刘嘉雷. 小兴安岭林火动态研究[J]. 陆地生态系统与保护学报, 2021, 1(1): 47-58. doi: 10.12356/j.2096-8884.2021-0003
引用本文: 田晓瑞, 宗学政, 王志成, 刘嘉雷. 小兴安岭林火动态研究[J]. 陆地生态系统与保护学报, 2021, 1(1): 47-58. doi: 10.12356/j.2096-8884.2021-0003
Xiaorui TIAN, Xuezheng ZONG, Zhicheng WANG, Jialei LIU. Study on the Fire Regime in Xiaoxing'an Mountains,China[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 47-58. doi: 10.12356/j.2096-8884.2021-0003
Citation: Xiaorui TIAN, Xuezheng ZONG, Zhicheng WANG, Jialei LIU. Study on the Fire Regime in Xiaoxing'an Mountains,China[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 47-58. doi: 10.12356/j.2096-8884.2021-0003

小兴安岭林火动态研究

doi: 10.12356/j.2096-8884.2021-0003
基金项目: 国家自然科学基金资助项目(31770695);中国林业科学研究院基本科研业务费专项(CAFYBB2019ZB003)
详细信息
    作者简介:

    田晓瑞:E-mail:tianxr@caf.ac.cn

    通讯作者:

    E-mail:tianxr@caf.ac.cn

  • 中图分类号: S762

Study on the Fire Regime in Xiaoxing'an Mountains,China

  • 摘要:   目的  研究小兴安岭地区的森林火险与火发生规律,调查主要森林类型的可燃物特征,分析潜在火行为,为林火管理提供科学依据。  方法  根据1980—2010年地面气象观测数据,利用R计算火险天气指数,分析火险指数、火发生和过火面积的变化。采用标准地方法调查小兴安岭6种典型林分的可燃物特征,利用可燃物特征分类系统模拟各可燃物类型在不同天气情景下的潜在地表火和树冠火行为特征。  结果  小兴安岭的林火主要发生在春季(4—6月)和秋季(9—10月)2个时段,干旱年份夏季也可能发生森林火灾。森林的地表可燃物积累较多,主要为地表凋落物和木质可燃物(<1000 h),地表火强度随可燃物含水率降低而增大。林下植被以绣线菊(Spiraea salicifolia)-铁线蕨(Adiantum capillus-veneris)为主的林分潜在地表火蔓延速度显著高于林下以暴马丁香(Syringa reticulata subsp. amurensis)-苔草(Carex sp.)为主的林分,但其火强度低于林下以暴马丁香-苔草为主的林分。针叶林和针阔混交林都可能发生树冠火。  结论  林火管理有效减少了火发生。小兴安岭北部林区可燃物载量多,潜在火行为相关指数高,是未来林火管理的重点区域。干旱情景下,6种林分类型均有发生树冠火的可能,可以通过清理可燃物梯和减小针叶树种的密度来降低森林火灾风险。
  • 图  1  研究区海拔(a)及植被类型(b)

    Figure  1.  Elevation (a) and vegetation types (b) of study area

    图  2  1953—2016年火发生次数及过火面积

    Figure  2.  Annual fires and burned area during the period of 1953–2016

    图  3  1953—1987年和1988—2016年2个时段研究区的火发生频度和场均过火面积分布 (a)1953—1987年火发生频度;(b)1988—2016年火发生频度;(c)1953—1987年场均过火面积;(d)1988—2016年场均过火面积

    Figure  3.  Distribution of fires and average burned areas per fire in two periods (a) distribution of fire frequency during the period of 1953–1987; (b) distribution of fire frequency during the period of 1988–2016; (c) distribution of average burned areas per fire during the period of 1953–1987; (d) distribution of average burned areas per fire during the period of 1988–2016

    图  4  1953—1987年和1988—2016年2个时段的火发生分布

    Figure  4.  Distribution of fire sources during the periods of 1953—1987 and 1988—2016

    图  5  春季(a)和秋季(b)火险期的降水量分布

    Figure  5.  The precipitation distribution of spring (a) and autumn (b) fire seasons

    图  6  火发生次数、过火面积、火险指数和降水年内变化 (a)月均过火面积分布;(b)每日降水和FWI中位值变化

    Figure  6.  Changes of fires, burned area, FWI, and precipitation in study area (a) Distribution of average burned areas in month; (b) variation of daily 50th precipitation and FWI

    图  7  不同可燃物含水率情景下各林分的潜在地表火行为 (a)火蔓延速度;(b)火焰高度;(c)火强度

    注:林分类型同表1。Forest types are the same as Table 1.

    Figure  7.  Surface fire behavior of six forest types under scenarios with various moisture content of fuels (a) fire spread speed; (b) flame height; (c) fire intensity

    图  8  不同林分的潜在树冠火行为

    Figure  8.  Potential crown fire behavior of each forest type

    表  1  调查林分的基本信息

    Table  1.   Base information of each forest type

    林分类型
    Forest type
    树种组成
    Tree species composition
    郁闭度
    Canopy density
    平均树高
    Average height/m
    胸径
    Average DBH/cm
    密度
    Density/
    (tree/hm2)
    海拔
    Altitude/m
    坡向
    Aspect
    坡度
    Slope/(°)
    灌木
    Shrub
    草本
    Grass
    15落5桦0.7810.8/2.816.6/21183347阳坡3暴马
    丁香
    苔草
    27枫2红1榛0.8514.4/2.225.1/1.41234481.4阳坡3
    36落4暴0.818.6/1.917.4/1.1921490.7阳坡3
    46落2椴1红1枫0.710.3/8.6/20.3/5.913.7/14.8/29.1/4.1404331.1阳坡3绣线菊铁线蕨
    55落3白2毛0.757.8/4.7/5.711.5/3.3/5.3890387.2阳坡3
    67红2落1白0.7514.1/17.6/1721.5/23.2/19.6344383.4阳坡3
      注:落——落叶松(Larix gmelinii);桦——黒桦(Rhamnus maximovicziana);枫——五角枫(Acer pictum subsp. mono);红——红松(Pinus koraiensis);榛——榛(Corylus heterophylla);暴——暴马丁香(Syringa reticulata subsp. amurensis);椴——椴树(Tilia tuan);白——白桦(Betula platyphylla) ;苔草(Carex sp.) ;绣线菊(Spiraea salicifolia) ;铁线蕨(Adiantum capillus-veneris) 。
    下载: 导出CSV

    表  2  可燃物特征分类系统的可燃物参数

    Table  2.   Fuel parameters in FCCS

    可燃物层 Fuel stratum参数 Parameters
    冠层 Canopy主要、次要乔木(活立木与死木)的郁闭度、平均树高、胸径、密度、可燃物梯高度 Canopy density, average height, diameter at breast height, density, and fuel ladder height of primary and secondary trees (living and dead trees)
    灌木 Shrub主要、次要灌木的盖度、高度、活植株比例、载量及种类Coverage, height, proportion of living plants, loading and species of main and secondary shrubs
    草本 Herb主要、次要草本的盖度、高度、活植株比例、载量及种类Coverage, height, proportion of living plants, loading and species of primary and secondary herbs
    倒木 Wood倒木盖度、各时滞可燃物(1~10000 h)的载量和种类Coverage of fallen wood, loading and type of each time lag (1~10000 h) fuels
    地表凋落物与地衣苔藓
    Litter-Lichen-Moss
    地表可燃物、地衣和苔藓的盖度、厚度、种类及载量 Coverage, thickness, species, and loading of surface fuel, lichen, and moss
    地下可燃物 Ground fuel半分解腐殖质和分解腐殖质的盖度、厚度、类型及载量 Coverage, thickness, type, and loading of semi-decomposed humus and decomposed humus
    下载: 导出CSV

    表  3  可燃物含水率情景(%)

    Table  3.   Fuel moisture scenarios (%)

    情景
    Scenario
    含水率情景描述
    Scenario description of various fuel moisture content
    草本
    Herb
    灌木
    Shrub
    树冠
    Crown
    1 h10 h100 h
    D1L1死可燃物含水率极低、草本植物全部干枯
    Very low moisture content of dead fuels, fully cured herb
    306060345
    D1L2死可燃物含水率极低、2/3草本植物干枯
    Very low moisture content of dead fuels, 2/3 cured herb
    609090345
    D1L3死可燃物含水率极低、1/3草本植物干枯
    Very low moisture content of dead fuels, 1/3 cured herb
    90120120345
    D1L4死可燃物含水率极低、草本植物未干枯
    Very low moisture content of dead fuels, fully green herb
    120150150345
    D2L1死可燃物含水率低、草本植物全部干枯
    Low moisture content of dead fuels, fully cured herb
    306060678
    D2L2死可燃物含水率低、2/3草本植物干枯
    Low moisture content of dead fuels, 2/3 cured herb
    609060678
    D2L3死可燃物含水率低、1/3草本植物干枯
    Low moisture content of dead fuels, 1/3 cured herb
    9012060678
    D2L4死可燃物含水率低、草本植物未干枯
    Low moisture content of dead fuels, fully green herb
    12015090678
    D3L1死可燃物含水率中等、草本植物全部干枯
    Moderate moisture content of dead fuels, fully cured herb
    30609091011
    D3L2死可燃物含水率中等、2/3草本植物干枯
    Moderate moisture content of dead fuels, 2/3 cured herb
    60909091011
    D3L3死可燃物含水率中等、1/3草本植物干枯
    Moderate moisture content of dead fuels, 1/3 cured herb
    9012012091011
    D3L4死可燃物含水率中等、草本植物未干枯
    Moderate moisture content of dead fuels, fully green herb
    12015012091011
    D4L1死可燃物含水率高、草本植物全部干枯
    High moisture content of dead fuels, fully cured herb
    3060120121314
    D4L2死可燃物含水率高、2/3草本植物干枯
    High moisture content of dead fuels, 2/3 cured herb
    6090150121314
    D4L3死可燃物含水率高、1/3草本植物干枯
    High moisture content of dead fuels, 1/3 cured herb
    90120150121314
    D4L4死可燃物含水率高、草本植物未干枯
    High moisture content of dead fuels, fully green herb
    120150150121314
    下载: 导出CSV

    表  4  各林分可燃物特征

    Table  4.   Fuel characteristics of each forest type

    林分
    Forest type
    死树密度
    Density of dead trees/
    (tree/hm2)
    可燃物梯
    (最低)
    Fuel ladder (minimum)/
    cm
    灌木
    Shrub
    草本
    Grass
    地表可燃物
    Surface fuel/(t/hm2)
    平均高度
    Average height/cm
    活植株比例
    Percent live/
    %
    载量
    Load/
    (t/hm2)
    平均高度
    Average height/
    cm
    活植株比例
    Percent live/%
    载量
    Loading/
    (t/hm2)
    厚度
    Depth/
    cm
    凋落物
    Litter
    1 h10 h100 h1 000 h
    125330551000.4 24850.71.80.6 0.50.51.70
    21429731000.1271000.11.00.80.10.10.20
    309401000.2151000.51.30.60.10.10.20
    4049611000.252950.42.01.00.10.10.10
    509581000.115500.41.31.30.10.20.30
    60150671000.2151000.22.50.60.10.10.20.3
    下载: 导出CSV
  • [1] 蔡卫红, 王晓红, 于宏洲, 等, 2013. 基于Rothermel模型的可燃物参数对林火行为影响的计算机仿真[J]. 中南林业科技大学学报, 33(11): 34-41. doi:  10.3969/j.issn.1673-923X.2013.11.007
    [2] 杜春英, 于成龙, 刘丹, 2010. 大兴安岭地区雷击火发生环境分析[J]. 中国农业气象, 31(4): 596-599. doi:  10.3969/j.issn.1000-6362.2010.04.020
    [3] 郭福涛, 苏漳文, 马祥庆, 等, 2015. 大兴安岭塔河地区雷击火发生驱动因子综合分析[J]. 生态学报, 35(19): 6439-6448.
    [4] 国家林业局, (2016-12-29)[2020-11-6]. 全国森林防火规划(2016-2025)[EB/OL]. http://www.gov.cn/xinwen/2016-12/29/content_5154054.htm.
    [5] 侯俊峰, 2017. 伊春林区森林火灾发生规律及风险评估研究 [D]. 北京: 北京林业大学.
    [6] 胡海清, 李楠, 孙龙, 等, 2011. 伊春地区森林火灾时空分布格局[J]. 东北林业大学学报, 39(10): 67-70. doi:  10.3969/j.issn.1000-5382.2011.10.019
    [7] 胡海清, 罗斯生, 罗碧珍, 等, 2017. 森林可燃物含水率及其预测模型研究进展[J]. 世界林业研究, 30(3): 64-69.
    [8] 李顺, 吴志伟, 梁宇, 等, 2017. 大兴安岭林火发生的时空聚集性特征[J]. 生态学杂志, 36(1): 198-204.
    [9] 梁慧玲, 郭福涛, 王文辉, 等, 2015. 小兴安岭伊春地区林火发生自然影响因子及其影响力[J]. 东北林业大学学报, 43(12): 29-35. doi:  10.3969/j.issn.1000-5382.2015.12.007
    [10] 刘林馨, 2012. 小兴安岭森林生态系统植物多样性及生态服务功能价值研究 [D]. 哈尔滨: 东北林业大学.
    [11] 刘兴周, 1992. 小兴安岭林火发生和气象因子的关系[J]. 森林防火, (6): 34-38.
    [12] 刘志华, 杨健, 贺红士, 等, 2011. 黑龙江大兴安岭呼中林区火烧点格局分析及影响因素[J]. 生态学报, 31(6): 1669-1677.
    [13] 苗庆林, 刘耀香, 田晓瑞, 2014. 林火管理对火动态的影响[J]. 世界林业研究, 27(4): 42-47.
    [14] 苗庆林, 田晓瑞, 2016. 多气候情景下大兴安岭森林燃烧性评估[J]. 林业科学, 52(10): 109-116. doi:  10.11707/j.1001-7488.20161014
    [15] 倪长虹, 邸雪颖, 2009. 黑龙江省大兴安岭雷击火发生规律[J]. 东北林业大学学报, 37(1): 55-57+75. doi:  10.3969/j.issn.1000-5382.2009.01.020
    [16] 盛裴轩, 毛节泰, 李建国, 等, 2013. 大气物理学 [M]. 北京: 北京大学出版社.
    [17] 田晓瑞, 舒立福, 王明玉, 2005. 林火动态变化对我国东北地区森林生态系统的影响[J]. 森林防火, (1): 21-25. doi:  10.3969/j.issn.1002-2511.2005.01.010
    [18] 田晓瑞, 舒立福, 赵凤君, 等, 2012. 大兴安岭雷击火发生条件分析[J]. 林业科学, 48(7): 98-103. doi:  10.11707/j.1001-7488.20120716
    [19] 田晓瑞, 舒立福, 赵凤君, 等, 2015. 中国主要生态地理区的林火动态特征分析[J]. 林业科学, 51(9): 71-77.
    [20] 田晓瑞, 王明玉, 殷丽, 等, 2009. 大兴安岭南部春季火行为特征及可燃物消耗[J]. 林业科学, 45(3): 90-95. doi:  10.3321/j.issn:1001-7488.2009.03.016
    [21] 田晓瑞, 赵凤君, 舒立福, 等, 2014. 1961—2010年中国植被区的气候与林火动态变化[J]. 应用生态学报, 25(11): 3279-3286.
    [22] 于洋, 邹莉, 孙婷婷, 等, 2013. 小兴安岭原始红松林的植被多样性[J]. 草业科学, 30(8): 1175-1181.
    [23] 张晓芳, 董文站, 程春香, 等, 2009. 小兴安岭伊春林区森林火灾特征及变化规律分析[J]. 黑龙江气象, 26(4): 23-25. doi:  10.3969/j.issn.1002-252X.2009.04.010
    [24] 郑琼, 邸雪颖, 金森, 等, 2013. 伊春地区1980—2010年森林火灾时空格局及影响因子[J]. 林业科学, 49(4): 157-163. doi:  10.11707/j.1001-7488.20130424
    [25] 宗学政, 田晓瑞, 2021. 可燃物处理对大兴安岭地区主要林型火行为的影响[J]. 林业科学, 57(2): 139-149. doi:  10.11707/j.1001-7488.20210214
    [26] Cai L, He H S, Liang Y, et al, 2019. Analysis of the uncertainty of fuel model parameters in wildland fire modelling of a boreal forest in north-east China[J]. International Journal of Wildland Fire, 28(3): 205-215. doi:  10.1071/WF18083
    [27] Calheiros T, Pereira M G, Nunes J P, 2021. Assessing impacts of future climate change on extreme fire weather and pyro-regions in Iberian Peninsula[J]. Science of The Total Environment, 754: 142233. doi:  10.1016/j.scitotenv.2020.142233
    [28] Christopoulou A, Mallinis G, Vassilakis E, et al, 2019. Assessing the impact of different landscape features on post-fire forest recovery with multitemporal remote sensing data: the case of Mount Taygetos (southern Greece)[J]. International Journal of Wildland Fire, 28(7): 521-532.
    [29] Cronan J B, Wright C S, Petrova M, 2015. Effects of dormant and growing season burning on surface fuels and potential fire behavior in northern Florida longleaf pine (Pinus palustris) flatwoods[J]. Forest Ecology and Management, 354: 318-333. doi:  10.1016/j.foreco.2015.05.018
    [30] Curt T, Fréjaville T, 2017. Wildfire policy in Mediterranean France: how far is it efficient and sustainable?[J]. Risk Analysis, 38(3): 472-488.
    [31] Dasgupta S, Qu J J, Hao X, et al, 2007. Evaluating remotely sensed live fuel moisture estimations for fire behavior predictions in Georgia, USA[J]. Remote Sensing of Environment, 108(2): 138-150. doi:  10.1016/j.rse.2006.06.023
    [32] Eskandari S, Miesel J R, Pourghasemi H R, 2020. The temporal and spatial relationships between climatic parameters and fire occurrence in northeastern Iran[J]. Ecological Indicators, 118: 106720. doi:  10.1016/j.ecolind.2020.106720
    [33] Hanes C C, Wang X, Jain P, et al, 2018. Fire-regime changes in Canada over the last half century[J]. Canadian Journal of Forest Research, 49(3): 256-269.
    [34] Heydari M, Rostamy A, Najafi F, et al, 2017. Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran[J]. Journal of Forestry Research, 28(1): 95-104.
    [35] Hollingsworth L W T, Kurth L L, Parresol B R, et al, 2012. A comparison of geospatially modeled fire behavior and fire management utility of three data sources in the southeastern United States[J]. Forest Ecology and Management, 273: 43-49. doi:  10.1016/j.foreco.2011.05.020
    [36] Hurteau M, North M, 2008. Fuel treatment effects on tree-based forest carbon storage and emissions under modeled wildfire scenarios[J]. Frontiers in Ecology and the Environment, 7(8): 409-414.
    [37] Jyoteeshkumar R P, Sharples J J, Lewis S C, et al, 2021. Modulating influence of drought on the synergy between heatwaves and dead fine fuel moisture content of bushfire fuels in the Southeast Australian region[J]. Weather and Climate Extremes, 31: 100300. doi:  10.1016/j.wace.2020.100300
    [38] Keane R E, Gray K, Bacciu V, et al, 2012. Spatial scaling of wildland fuels for six forest and rangeland ecosystems of the northern Rocky Mountains, USA[J]. Landscape Ecology, 27(8): 1213-1234. doi:  10.1007/s10980-012-9773-9
    [39] Keyser A R, Westerling A L, 2019. Predicting increasing high severity area burned for three forested regions in the western United States using extreme value theory[J]. Forest Ecology and Management, 432: 694-706. doi:  10.1016/j.foreco.2018.09.027
    [40] Krawchuk M A, Haire S L, Coop J, et al, 2016. Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America[J]. Ecosphere, 7(12): e01632.
    [41] Lawson B D, Armitage O B, 2008. Weather guide for the Canadian forest fire danger rating system [M]. Edmonton, Alberta: Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre.
    [42] Liu Z, 2016. Effects of climate and fire on short-term vegetation recovery in the boreal larch forests of Northeastern China[J]. Scientific Reports, 6: 37572. doi:  10.1038/srep37572
    [43] Matthews S, Sullivan A L, Watson P, et al, 2012. Climate change, fuel and fire behaviour in a eucalypt forest[J]. Global Change Biology, 18(10): 3212-3223. doi:  10.1111/j.1365-2486.2012.02768.x
    [44] McKenzie D M, Raymond C, Kellogg L K B, et al, 2007. Mapping fuels at multiple scales: landscape application of the Fuel Characteristic Classification System[J]. Canadian Journal of Forest Research, 37(12): 2421-2437. doi:  10.1139/X07-056
    [45] Miller E A, 2020. A conceptual interpretation of the drought code of the Canadian forest fire weather index system[J]. Fire, 3(2): 23. doi:  10.3390/fire3020023
    [46] Mitsopoulos I D, Dimitrakopoulos A P, 2007. Canopy fuel characteristics and potential crown fire behavior in Aleppo pine (Pinus halepensis Mill.) forests[J]. Annals of Forest Science, 64(3): 287-299. doi:  10.1051/forest:2007006
    [47] Ottmar R, Sandberg D, Riccardi C, et al, 2007. An overview of the Fuel Characteristic Classification System: quantifying, classifying, and creating fuelbeds for resource planning[J]. Canadian Journal of Forest Research, 37(12): 2383-2393. doi:  10.1139/X07-077
    [48] Paritsis J, Landesmann J B, Kitzberger T, et al, 2018. Pine plantations and invasion alter fuel structure and potential fire behavior in a patagonian forest-steppe ecotone[J]. Forests, 9(3): 117. doi:  10.3390/f9030117
    [49] Parresol B, Blake J, Thompson A, 2012. Effects of overstory composition and prescribed fire on fuel loading across a heterogeneous managed landscape in the southeastern USA[J]. Forest Ecology and Management, 273: 29-42. doi:  10.1016/j.foreco.2011.08.003
    [50] Pausas J G, Fernández-Muñoz S, 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime[J]. Climatic Change, 110(1-2): 215-226. doi:  10.1007/s10584-011-0060-6
    [51] Pettinari M L, Chuvieco E, 2016. Generation of a global fuel data set using the Fuel Characteristic Classification System[J]. Biogeosciences, 12(20): 2061-2076.
    [52] Piqué M, Domènech R, 2018. Effectiveness of mechanical thinning and prescribed burning on fire behavior in Pinus nigra forests in NE Spain[J]. Science of the Total Environment, 618: 1539-1546. doi:  10.1016/j.scitotenv.2017.09.316
    [53] Riccardi C, Prichard S, Sandberg D, et al, 2007. Quantifying physical characteristics of wildland fuels using the Fuel Characteristic Classification System[J]. Canadian Journal of Forest Research, 37(12): 2413-2420. doi:  10.1139/X07-175
    [54] Rodrigues M, Jiménez-Ruano A, de la Riva J, 2020. Fire regime dynamics in mainland Spain. Part 1: drivers of change[J]. Science of The Total Environment, 721: 135841. doi:  10.1016/j.scitotenv.2019.135841
    [55] Sandberg D V, Riccardi C L, Schaaf M D, 2007. Fire potential rating for wildland fuelbeds using the Fuel Characteristic Classification System[J]. Canadian Journal of Forest Research, 37(12): 2456-2463. doi:  10.1139/X07-093
    [56] Schoennagel T, Veblen T T, Negron J F, et al, 2012. Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA[J]. Plos One, 7(1): e30002. doi:  10.1371/journal.pone.0030002
    [57] Sherriff R L, Veblen T T, 2007. A spatially-explicit reconstruction of historical fire occurrence in the ponderosa pine zone of the Colorado front range[J]. Ecosystems, 10(2): 311-323. doi:  10.1007/s10021-007-9022-2
    [58] Stocks B J, Lynham T J, Lawson B D, et al, 1989. Canadian forest fire danger rating system: an overview[J]. The Forestry Chronicle, 65(4): 258-265. doi:  10.5558/tfc65258-4
    [59] Stocks B J, Mason J A, Todd J B, et al, 2002. Large forest fires in Canada, 1959–1997[J]. Journal of Geophysical Research: Atmospheres, 107: 8149.
    [60] Su Z, Hu H, Wang G, et al, 2018. Using GIS and Random Forests to identify fire drivers in a forest city, Yichun, China[J]. Geomatics, Natural Hazards and Risk, 9(1): 1207-1229. doi:  10.1080/19475705.2018.1505667
    [61] Tian X R, Cui W, Shu L, 2020. Evaluating fire management effectiveness with a burn probability model in Daxing’anling, China[J]. Canadian Journal of Forest Research, 50: 670-679. doi:  10.1139/cjfr-2019-0413
    [62] Tian X R, McRae D J, Jin J, et al, 2011. Wildfires and the Canadian Forest Fire Weather Index system for the Daxing’anling region of China[J]. International Journal of Wildland Fire, 20(4): 963-973.
    [63] Torres F T P, Romeiro J M N, Santos A C d A, et al, 2018. Fire danger index efficiency as a function of fuel moisture and fire behavior[J]. Science of the Total Environment, 631-632: 1304-1310. doi:  10.1016/j.scitotenv.2018.03.121
    [64] Wang X L, Wotton B M, Cantin A S, et al, 2017. Cffdrs: an R package for the Canadian forest fire danger rating system[J]. Ecological Processes, 6(1): 5. doi:  10.1186/s13717-017-0070-z
    [65] Yang S, Ge M, Li X, et al, 2020. The spatial distribution of the normal reference values of the activated partial thromboplastin time based on ArcGIS and GeoDA[J]. International Journal of Biometeorology, 64: 779-790. doi:  10.1007/s00484-020-01868-2
    [66] Zhao F, Liu Y, Shu L, 2020. Change in the fire season pattern from bimodal to unimodal under climate change: The case of Daxing'anling in northeast China[J]. Agricultural and Forest Meteorology, 291: 108075. doi:  10.1016/j.agrformet.2020.108075
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  1306
  • HTML全文浏览量:  513
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 网络出版日期:  2021-06-17
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回

    关于网站迁移的通知

     尊敬的各位专家、读者:

    本刊网站将于6月28日起迁移至中国林业科学研究院期刊网(https://journals.caf.ac.cn/ldstxtybhxb/),届时旧网址http://www.ldstxtybhxb.com/将停止访问,如需投稿请直接登录http://edit.caf.ac.cn/ldstxtybhxb。由此给您带来不便,敬请谅解!

    如有任何问题,请及时联系编辑部,Tel:010-62889503;E-mail:ldstxtybh@caf.ac.cn。

     

    陆地生态系统与保护学报

    2024-06-25