留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气候变暖及大尺度气候波动对全球林火与森林碳排放的影响

胡源 赵凤君 陈锋 舒立福

胡源, 赵凤君, 陈锋, 舒立福. 气候变暖及大尺度气候波动对全球林火与森林碳排放的影响[J]. 陆地生态系统与保护学报, 2021, 1(1): 75-81. doi: 10.12356/j.2096-8884.2021-0004
引用本文: 胡源, 赵凤君, 陈锋, 舒立福. 气候变暖及大尺度气候波动对全球林火与森林碳排放的影响[J]. 陆地生态系统与保护学报, 2021, 1(1): 75-81. doi: 10.12356/j.2096-8884.2021-0004
Yuan HU, Fengjun ZHAO, Feng CHEN, Lifu SHU. Impacts of Global Warming and Large-scale Climate Fluctuation on Forest Fires and Forest Carbon Emissions[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 75-81. doi: 10.12356/j.2096-8884.2021-0004
Citation: Yuan HU, Fengjun ZHAO, Feng CHEN, Lifu SHU. Impacts of Global Warming and Large-scale Climate Fluctuation on Forest Fires and Forest Carbon Emissions[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 75-81. doi: 10.12356/j.2096-8884.2021-0004

气候变暖及大尺度气候波动对全球林火与森林碳排放的影响

doi: 10.12356/j.2096-8884.2021-0004
基金项目: 国家自然科学基金(31971667)
详细信息
    作者简介:

    胡源:E-mail: 201821490021@mail.bnu.edu.cn

    通讯作者:

    E-mail: 201821490021@mail.bnu.edu.cn

  • 中图分类号: S757

Impacts of Global Warming and Large-scale Climate Fluctuation on Forest Fires and Forest Carbon Emissions

  • 摘要: 森林在全球碳循环过程中起着重要作用。而火是干扰森林的重要因子。随着全球变暖日益显著、极端气候事件增加,热浪、干旱以及大尺度气候波动等造成的森林火灾频率和强度不断增加,对全球森林生态系统碳循环产生了重大影响。研究气候变暖对林火和碳排放的影响,对提高生态环境的管理水平和可持续发展有重要意义。文中简述气候变暖对林火动态和森林碳循环的影响,以及火灾造成的损失,分析大尺度气候波动与林火发生的关系,最后,预测和讨论了未来气候变化情景下的火灾发展趋势,主要结论如下:1)气候变暖和干旱会导致林火发生频率和过火面积增加、强度增强;北半球和温带地区火险期提前、火险季节长度延长;森林碳排放量增加;森林火灾不仅直接造成森林面积锐减、污染大气环境、影响生物地球化学循环,甚至还给国家和人民来带巨大的经济和生命损失。2)大尺度气候波动与林火动态有非常密切的联系:与厄尔尼诺-南方涛动(El Niño-Southern Oscillation, ENSO)相关的太平洋海面温度(Sea Surface Temperature, SST)异常的空间分布可能受太平洋年代际涛动(Pacific Decadal Oscillation, PDO)调控,它通过与ENSO同相(重叠)或异相(抵消)来调节ENSO的影响。ENSO和PDO都与降水、温度和干旱严重程度密切相关,极大增加了火灾的风险、频率和过火面积;北大西洋年代际涛动(Atlantic Multi-decadal Oscillation, AMO)主要影响北半球的温度和降水,温暖的AMO将导致更高的温度、森林火灾次数和年林火面积;北极涛动(Arctic Oscillation, AO)主要影响欧亚大陆和北美大陆北部的气温和降水,AO处于正相位时,气温升高,环境干燥,会增加北半球中高纬度地区的火灾发生频率。3)未来气候情景下,不仅北半球会变得更加干旱和温暖,全球的森林火险指数和火灾数量也都有增加趋势。由于气候变化和人类活动的复杂性,这种趋势还存在很大不确定性,因此还需深入研究气候变化对林火关系的影响机理,以加强人类对火—气候现状的认识。
  • [1] 白夜, 王博, 贾宜松, 等, 2020. 美国加州森林火灾概述及启示[J]. 消防科学与技术, 39(4): 557-560. doi:  10.3969/j.issn.1009-0029.2020.04.036
    [2] 傅泽强, 戴尔阜, 2001. 大兴安岭森林火险季节动态特征及其气候条件分析[J]. 自然灾害学报, 10(4): 113-116. doi:  10.3969/j.issn.1004-4574.2001.04.021
    [3] 龚道溢, 王绍武, 2003. 近百年北极涛动对中国冬季气候的影响[J]. 地理学报, 58(4): 559-568. doi:  10.3321/j.issn:0375-5444.2003.04.010
    [4] 郭天峰, 周宇飞, 2015. 森林火灾与气候变化[J]. 森林防火, (3): 34-37. doi:  10.3969/j.issn.1002-2511.2015.03.012
    [5] 胡海清, 魏书精, 孙龙, 等, 2013. 气候变化、火干扰与生态系统碳循环[J]. 干旱区地理, 36(1): 57-75.
    [6] 李树枝, 郭瑞雪, 2016. 2015年全球土地利用现状分析及启示[J]. 国土资源情报, (12): 3-9. doi:  10.3969/j.issn.1674-3709.2016.12.001
    [7] 陆昕, 黄滨, 杨素芝, 等, 2019. 大兴安岭地区森林火灾发生的原因和扑救特征[J]. 东北林业大学学报, 47(11): 77-80. doi:  10.3969/j.issn.1000-5382.2019.11.015
    [8] 琚建华, 任菊章, 吕俊梅, 2004. 北极涛动年代际变化对东亚北部冬季气温增暖的影响[J]. 高原气象, 23(4): 429-434. doi:  10.3321/j.issn:1000-0534.2004.04.002
    [9] 屈静玄, 龚道溢, 李桑, 2015. 春季北极涛动对南海气候的影响[J]. 科学通报, 60(24): 2327-2337.
    [10] 舒立福, 田晓瑞, 李红, 1998. 世界森林火灾状况综述[J]. 世界林业研究, (6): 42-48.
    [11] 田晓瑞, 舒立福, 阿力甫江, 2003. 林火研究综述(Ⅲ)-ENSO对森林火灾的影响[J]. 世界林业研究, 16(5): 22-25. doi:  10.3969/j.issn.1001-4241.2003.05.005
    [12] 田晓瑞, 舒立福, 王明玉, 2003. 1991~2000年中国森林火灾直接释放碳量估算[J]. 火灾科学, 12(1): 6-10. doi:  10.3969/j.issn.1004-5309.2003.01.002
    [13] 田晓瑞, 舒立福, 赵凤君, 等, 2017. 气候变化对中国森林火险的影响[J]. 林业科学, 53(7): 159-169. doi:  10.11707/j.1001-7488.20170716
    [14] 汪少华, 张茂震, 赵平安, 等, 2011. 基于TM影像、森林资源清查数据和人工神经网络的森林碳空间分布模拟[J]. 生态学报, 31(04): 998-1008.
    [15] 王彦明, 2009. 北大西洋长周期年代际振荡(AMO)对亚洲季风区气候的影响—观测及多模式模拟[D]. 青岛: 中国海洋大学.
    [16] 岳超, 罗彩访, 舒立福, 等, 2020. 全球变化背景下野火研究进展[J]. 生态学报, 40(2): 385-401.
    [17] 余新晓, 鲁绍伟, 靳芳, 等, 2005. 中国森林生态系统服务功能价值评估[J]. 生态学报, 25(8): 2096-2102. doi:  10.3321/j.issn:1000-0933.2005.08.038
    [18] 张志, 许文浩, 2020. 澳大利亚2019-2020森林火灾对我国应急管理体系建设的启示[J]. 中国应急救援, (2): 18-22. doi:  10.3969/j.issn.1673-5579.2020.02.005
    [19] 赵凤君, 王明玉, 舒立福, 等, 2009. 气候变化对林火动态的影响研究进展[J]. 气候变化研究进展, 5(1): 50-55. doi:  10.3969/j.issn.1673-1719.2009.01.010
    [20] 周宇飞, 王振师, 吴泽鹏, 等, 2014. 广东森林火灾碳排放及应对气候变化策略[J]. 广东林业科技, 30(6): 67-71.
    [21] Abatzoglou J T, Williams A P, 2016. Impact of anthropogenic climate change on wildfire across western US forests[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(42): 11770-11775. doi:  10.1073/pnas.1607171113
    [22] Abatzoglou J T, Williams A P, Boschetti L, et al, 2018. Global patterns of interannual climate-fire relationships[J]. Global Change Biology, 24(11): 5164-5175. doi:  10.1111/gcb.14405
    [23] Andela N, Morton D C, Giglio L, et al, 2017. A human-driven decline in global burned area[J]. Science, 356(6345): 1356-1362. doi:  10.1126/science.aal4108
    [24] Aragao L E O C, Anderson L O, Fonseca M G, et al, 2018. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions[J]. Nature Communications, 9(1): 536. doi:  10.1038/s41467-017-02771-y
    [25] Balzter H, Gerard F F, George C T, et al, 2005. Impact of the Arctic Oscillation pattern on interannual forest fire variability in Central Siberia[J]. Geophysical research letters, 32(147): 337-349.
    [26] Beverly J L, Flannigan M D, Stocks B J, et al, 2011. The association between Northern Hemisphere climate patterns and interannual variability in Canadian wildfire activity[J]. Canadian Journal of Forest Research, 41(11): 2193-2201. doi:  10.1139/x11-131
    [27] Cai W, Cowan T, Raupach M, 2009. Positive Indian Ocean Dipole events precondition southeast Australia bushfires[J]. Geophysical Research Letters, 36: L19710. doi:  10.1029/2009GL039902
    [28] Cai W, Wang G, Santoso A, et al, 2015. Increased frequency of extreme La Nina events under greenhouse warming[J]. Nature Climate Change, 5(2): 132-137. doi:  10.1038/nclimate2492
    [29] Chiew F, Piechota T C, Dracup J A, et al, 1998. El Nino Southern Oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting[J]. Journal of Hydrology, 204(1-4): 138-149. doi:  10.1016/S0022-1694(97)00121-2
    [30] Cleary D, Grill A, 2004. Butterfly response to severe ENSO-induced forest fires in Borneo[J]. Ecological Entomology, 29(6): 666-676. doi:  10.1111/j.0307-6946.2004.00649.x
    [31] Crutzen P J, Andreae M O, 1990. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles[J]. Science, 250(4988): 1669-1678. doi:  10.1126/science.250.4988.1669
    [32] D'Arrigo R D, Cook E R, Mann M E, et al, 2003. Tree-ring reconstructions of temperature and sea-level pressure variability associated with the warm-season Arctic Oscillation since AD 1650[J]. Geophysical Research Letters, 30(11): 1-3.
    [33] Delworth T L, Zeng F, Vecchi G A, et al, 2016. The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere[J]. Nature Geoscience, 9(7): 509-512. doi:  10.1038/ngeo2738
    [34] Dennison P E, Brewer S C, Arnold J D, et al, 2014. Large wildfire trends in the western United States, 1984-2011[J]. Geophysical Research Letters, 41(8): 2928-2933. doi:  10.1002/2014GL059576
    [35] Dixon RK, Krankina O N, 1993. Forest fires in Russia: carbon dioxide emission to the atmosphere[J]. Canadian Journal Forest Research, 23(4): 700-705. doi:  10.1139/x93-091
    [36] Enfield D B, Mestas-Nunez A M, Trimble P J, 2001. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US[J]. Geophysical Research Letters, 28(10): 2077-2080. doi:  10.1029/2000GL012745
    [37] Flannigan M D, Krawchuk M A, de Groot W J, et al, 2009. Implications of changing climate for global wildland fire[J]. International Journal of Wildland Fire, 18(5): 483-507. doi:  10.1071/WF08187
    [38] Flannigan M, Stocks B, Turetsky M, et al, 2009. Impacts of climate change on fire activity and fire management in the circumboreal forest[J]. Global Change Biology, 15(3): 549-560. doi:  10.1111/j.1365-2486.2008.01660.x
    [39] Flannigan M, Cantin A S, de Groot W J, et al, 2013. Global wildland fire season severity in the 21st century[J]. Forest Ecology and Management, 294(SI): 54-61.
    [40] Gomes J F P, Radovanovic M, 2008. Solar activity as a possible cause of large forest fires-a case study: analysis of the Portuguese forest fires[J]. Science of the Total Environment, 394(1): 197-205. doi:  10.1016/j.scitotenv.2008.01.040
    [41] Hansen M C, Potapov P V, Moore R, et al, 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change[J]. Science, 342(6160): 850-853. doi:  10.1126/science.1244693
    [42] Hao W M, Petkov A, Nordgren B L, et al, 2016. Daily black carbon emissions from fires in northern Eurasia for 2002-2015[J]. Geoscientific Model Development, 9(12): 4461-4474. doi:  10.5194/gmd-9-4461-2016
    [43] Hessl A E, Mckenzie D, Schellhaas R, 2004. Drought and Pacific Decadal Oscillation linked to fire occurrence in the inland Pacific Northwest[J]. Ecological Applications, 14(2): 425-442. doi:  10.1890/03-5019
    [44] Hoffman K M, Gavin D G, Starzomski B M, 2016. Seven hundred years of human-driven and climate-influenced fire activity in a British Columbia coastal temperate rainforest[J]. Royal Society Open Science, 3: 160608. doi:  10.1098/rsos.160608
    [45] Jolly W M, Cochrane M A, Freeborn P H, et al, 2015. Climate-induced variations in global wildfire danger from 1979 to 2013[J]. Nature Communications, 6: 7537. doi:  10.1038/ncomms8537
    [46] Kelley D I, Bistinas I, Whitley R, et al, 2019. How contemporary bioclimatic and human controls change global fire regimes[J]. Nature Climate Change, 9(9): 690-696. doi:  10.1038/s41558-019-0540-7
    [47] Kerr R A, 2000. A North Atlantic climate pacemaker for the centuries[J]. Science, 288(5473): 1984-1986. doi:  10.1126/science.288.5473.1984
    [48] Kim J, Kug J, Jeong S, et al, 2020. Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation[J]. Science Advances, 6(2): eaax3308. doi:  10.1126/sciadv.aax3308
    [49] Kitzberger T, Brown P M, Heyerdahl E K, et al, 2007. Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America[J]. Proceedings of the National Academy of Sciences of the United States of America, 104(2): 543-548. doi:  10.1073/pnas.0606078104
    [50] Knight J R, Folland C K, Scaife A A, 2006. Climate impacts of the Atlantic Multidecadal Oscillation[J]. Geophysical Research Letters, 33(17): 17706. doi:  10.1029/2006GL026242
    [51] Knorr W, Arneth A, Jiang L, 2016. Demographic controls of future global fire risk[J]. Nature Climate Change, 6(8): 781-785. doi:  10.1038/nclimate2999
    [52] Li J, Sun C, Jin F, 2013. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability[J]. Geophysical Research Letters, 40(20): 5497-5502. doi:  10.1002/2013GL057877
    [53] Lu B, Li H, Wu J, et al, 2019. Impact of El Nino and Southern Oscillation on the summer precipitation over Northwest China[J]. Atmospheric Science Letters, 20(8): e928.
    [54] Macias Fauria M, Johnson E A, 2006. Large-scale climatic patterns control large lightning fire occurrence in Canada and Alaska forest regions[J]. Journal of Geophysical Research Biogeosciences, 111(G4): G04008.
    [55] Mantua N J, Hare S R, Zhang Y, et al, 1997. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 78(6): 1069-1079. doi:  10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
    [56] Margolis E Q, Swetnam T W, 2013. Historical fire-climate relationships of upper elevation fire regimes in the south-western United States[J]. International Journal of Wildland Fire, 22(5): 588-598. doi:  10.1071/WF12064
    [57] Mariani M, Fletcher M S, Holz A, et al, 2016. ENSO controls interannual fire activity in southeast Australia[J]. Geophysical Research Letters, 43(20): 10891-10900. doi:  10.1002/2016GL070572
    [58] Milenkovic M, Yamashkin A A, Ducic V, et al, 2017. Forest fires in Portugal- the connection with the Atlantic Multidecadal Oscollation (AMO)[J]. Journal of the Geographical Institute Jovan Cvijic SASA, 67(1): 27-35. doi:  10.2298/IJGI1701027M
    [59] Mo K C, Schemm J E, Yoo S, 2009. Influence of ENSO and the Atlantic multidecadal oscillation on drought over the United States[J]. Journal of Climate, 22(22): 5962-5982. doi:  10.1175/2009JCLI2966.1
    [60] Moritz M A, Parisien M, Batllori E, et al, 2012. Climate change and disruptions to global fire activity[J]. Ecosphere, 3(6): 49.
    [61] Pakdaman M, Naghab S S, Khazanedari L, et al, 2020. Lightning prediction using an ensemble learning approach for northeast of Iran[J]. Journal of Atmospheric and Solar- terrestrial Physics, 209: 105417. doi:  10.1016/j.jastp.2020.105417
    [62] Pan Y, Birdsey R A, Fang J, et al, 2011. A large and persistent carbon sink in the world's forests[J]. Science, 333(6045): 988-993. doi:  10.1126/science.1201609
    [63] Pinol J, Terradas J, Lloret F, 1998. Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain[J]. Climate Change, 38(3): 345-357. doi:  10.1023/A:1005316632105
    [64] Power S, Casey T, Folland C, et al, 1999. Inter-decadal modulation of the impact of ENSO on Australia[J]. Climate Dynamics, 15(5): 319-324. doi:  10.1007/s003820050284
    [65] Price C, Rind D, 1994. Possible implications of global climate change on global lightning distributions and frequencies[J]. Journal of Geophysical Research Atmospheres, 99(D5): 10823-10831. doi:  10.1029/94JD00019
    [66] Romps D M, Seeley J T, Vollaro D, et al, 2014. Projected increase in lightning strikes in the United States due to global warming[J]. Science, 346(6211): 851-854. doi:  10.1126/science.1259100
    [67] Ruffault J, Curt T, Martin-Stpaul N K, et al, 2018. Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean[J]. Natural Hazards and Earth System Sciences, 18(3): 847-856. doi:  10.5194/nhess-18-847-2018
    [68] Schoennagel T, Veblen T T, Kulakowski D, et al, 2007. Multidecadal climate variability and climate interactions affect subalpine fire occurrence, Western Colorado (USA)[J]. Ecology, 88(11): 2891-2902. doi:  10.1890/06-1860.1
    [69] Senici, Lucas, Ch en, et al, 2013. Multi-millennial fire frequency and tree abundance differ between xeric and mesic boreal forests in central Canada[J]. The Journal of Ecology, 101(2): 356-367. doi:  10.1111/1365-2745.12047
    [70] Sherriff R L, Veblen T T, 2008. Variability in fire-climate relationships in ponderosa pine forests in the Colorado Front Range[J]. International Journal of Wildland Fire, 17(1): 50-59. doi:  10.1071/WF07029
    [71] Shi C, Sun C, Wu G, et al, 2019. Summer temperature over the Tibetan Plateau modulated by Atlantic multidecadal variability[J]. Journal of Climate, 32(13): 4055-4067. doi:  10.1175/JCLI-D-17-0858.1
    [72] Siegert F, Ruecker G, Hinrichs A, et al, 2001. Increased damage from fires in logged forests during droughts caused by El Nino[J]. Nature, 414(6862): 437-440. doi:  10.1038/35106547
    [73] Staver A C, Archibald S, Levin S, 2011. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states[J]. Ecology, 92(5): 1063-1072. doi:  10.1890/10-1684.1
    [74] Steinman B A, Mann M E, Miller S K, 2015. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures[J]. Science, 347(6225): 988-991. doi:  10.1126/science.1257856
    [75] Taufik M, Torfs P J J F, Uijlenhoet R, et al, 2017. Amplification of wildfire area burnt by hydrological drought in the humid tropics[J]. Nature Climate Change, 7(6): 428-431. doi:  10.1038/nclimate3280
    [76] Thompson D W J, Wallace J M, 1998. The Arctic oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophysical Research Letters, 25(9): 1297-1300. doi:  10.1029/98GL00950
    [77] Turetsky M R, Benscoter B, Page S, et al, 2015. Global vulnerability of peatlands to fire and carbon loss[J]. Nature Geoscience, 8(1): 11-14. doi:  10.1038/ngeo2325
    [78] Vasconcelos S, Fearnside P M, Graca P, et al, 2013. Forest fires in southwestern Brazilian Amazonia: estimates of area and potential carbon emissions[J]. Forest Ecology and Management, 291: 199-208. doi:  10.1016/j.foreco.2012.11.044
    [79] Werf G R, Randerson J T, Giglio L, et al, 2017. Global fire emissions estimates during 1997–2016[J]. Earth System Science Data, 9(2): 697-720. doi:  10.5194/essd-9-697-2017
    [80] Wen N, Liu Z, Li L, 2019. Direct ENSO impact on East Asian summer precipitation in the developing summer[J]. Climate Dynamics, 52: 6799-6815. doi:  10.1007/s00382-018-4545-0
    [81] Westerling A L, Hidalgo H G, Cayan D R, et al, 2006. Warming and earlier spring increase western US forest wildfire activity[J]. Science, 313(5789): 940-943. doi:  10.1126/science.1128834
    [82] Wotton B M, Nock C A, Flannigan M D, 2010. Forest fire occurrence and climate change in Canada[J]. International Journal of Wildland Fire, 19(3): 253-271. doi:  10.1071/WF09002
    [83] Wu R, Yang S, Liu S, et al, 2010. Changes in the relationship between Northeast China summer temperature and ENSO[J]. Journal of Geophysical Research: Atmospheres, 115: D21107. doi:  10.1029/2010JD014422
    [84] Wu X, Mao J, 2019. Decadal changes in interannual dependence of the Bay of Bengal summer monsoon onset on ENSO modulated by the Pacific Decadal Oscillation[J]. Advances in Atmospheric Sciences, 36(12): 1404-1416. doi:  10.1007/s00376-019-9043-8
    [85] Zhang R, Delworth T L, Held I M, 2007. Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophysical Research Letters, 34(2): 346-358.
    [86] Zhou W, Chan J C L, 2007. ENSO and the South China Sea summer monsoon onset[J]. International Journal of Climatology, 27(2): 157-167. doi:  10.1002/joc.1380
  • 加载中
计量
  • 文章访问数:  1188
  • HTML全文浏览量:  785
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-24
  • 网络出版日期:  2021-10-22
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回

    关于网站迁移的通知

     尊敬的各位专家、读者:

    本刊网站将于6月28日起迁移至中国林业科学研究院期刊网(https://journals.caf.ac.cn/ldstxtybhxb/),届时旧网址http://www.ldstxtybhxb.com/将停止访问,如需投稿请直接登录http://edit.caf.ac.cn/ldstxtybhxb。由此给您带来不便,敬请谅解!

    如有任何问题,请及时联系编辑部,Tel:010-62889503;E-mail:ldstxtybh@caf.ac.cn。

     

    陆地生态系统与保护学报

    2024-06-25