留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甘肃小陇山暖温带针阔混交林大样地树木木材密度的空间变化

苏巧灵 李梦琳 田立新 李安民 袁士云 刘文桢 米湘成 黄继红 许玥 丁易 臧润国

苏巧灵, 李梦琳, 田立新, 李安民, 袁士云, 刘文桢, 米湘成, 黄继红, 许玥, 丁易, 臧润国. 甘肃小陇山暖温带针阔混交林大样地树木木材密度的空间变化[J]. 陆地生态系统与保护学报, 2021, 1(1): 12-27. doi: 10.12356/j.2096-8884.2021-0009
引用本文: 苏巧灵, 李梦琳, 田立新, 李安民, 袁士云, 刘文桢, 米湘成, 黄继红, 许玥, 丁易, 臧润国. 甘肃小陇山暖温带针阔混交林大样地树木木材密度的空间变化[J]. 陆地生态系统与保护学报, 2021, 1(1): 12-27. doi: 10.12356/j.2096-8884.2021-0009
Qiaoling SU, Menglin LI, Lixin TIAN, Anmin LI, Shiyun YUAN, Wenzhen LIU, Xiangcheng MI, Jihong HUANG, Yue XU, Yi DING, Runguo ZANG. Spatial Heterogeneity of Wood Density in Coniferous-broadleaved Mixed Forest Dynamics Plot in Xiaolong Mountains, Gansu Province[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 12-27. doi: 10.12356/j.2096-8884.2021-0009
Citation: Qiaoling SU, Menglin LI, Lixin TIAN, Anmin LI, Shiyun YUAN, Wenzhen LIU, Xiangcheng MI, Jihong HUANG, Yue XU, Yi DING, Runguo ZANG. Spatial Heterogeneity of Wood Density in Coniferous-broadleaved Mixed Forest Dynamics Plot in Xiaolong Mountains, Gansu Province[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 12-27. doi: 10.12356/j.2096-8884.2021-0009

甘肃小陇山暖温带针阔混交林大样地树木木材密度的空间变化

doi: 10.12356/j.2096-8884.2021-0009
基金项目: 中央级公益性科研院所基本科研业务费专项资金中国林科院重点项目(CAFYBB2019ZA002);国家自然科学基金面上项目(41671047)
详细信息
    作者简介:

    苏巧灵:E-mail: mysql94@163.com

    通讯作者:

    E-mail: dingy@caf.ac.cn

  • 中图分类号: S718.54

Spatial Heterogeneity of Wood Density in Coniferous-broadleaved Mixed Forest Dynamics Plot in Xiaolong Mountains, Gansu Province

  • 摘要:   目的  分析暖温带针阔混交林内木材密度的变化程度;探讨多元生境因子对不同群落木材密度空间分布的影响,揭示木材密度的种间和种内差异及其影响因素,为研究暖温带针阔混交林的物种共存与群落构建机制奠定基础。  方法  在甘肃小陇山地区的暖温带针阔混交林内布设大样地,依据样地内所有胸径≥ 10 cm独立个体的木材密度实测数据,利用方差分解分析种内、种间以及群落水平上木材密度的变化程度;利用多元回归分析探讨多元生境因子对群落水平木材密度空间分布的影响。  结果  样地内木材密度的差异主要来源于不同群落里树种间的差异,种间差异(71.70%)大于种内差异(28.30%)。在影响群落水平木材密度空间分布的因素中,非生物因子的影响大于生物因子。土壤因子中的pH值和地形因子中的海拔是影响木材密度的主要因子。在土壤pH值较低、海拔较高的群落中,木材密度的加权平均值较高。木材密度方差主要受土壤pH值影响,并随pH值的增大而增大。种内差异对木材密度加权平均值无显著影响,但对木材密度方差影响显著。  结论  甘肃小陇山针阔混交林木材密度空间异质性较强,非生物因子通过影响功能性状的总体分布来影响植物适应性,木材密度较高、种内差异较低的树种倾向于分布在海拔较高、土壤pH值较低的区域;相反,木材密度较低、种内差异较高的树种倾向于分布在海拔较低、土壤pH值较高的区域。在局域尺度下,忽视种内差异会导致木材密度方差被低估,影响对真实群落构建机制的理解。
  • 4  附录D 甘肃小陇山暖温带针阔混交林6 hm2样地生境因子(生物和非生物因子)分布

    4.  Appendix D. Spatial distribution of habitat factors (biotic and abiotic factors) in the 6 hm2Xiaolong Mountain forest dynamics plot, Gansu province

    图  1  甘肃小陇山6 hm2样地内40个物种的物种水平(a)及个体水平(b)木材密度频数分布图

    Figure  1.  Frequency distribution of species-level (a) and individual-level (b) wood densities for 40 common tree species in the 6 hm2 plot Xiaolong Mountains forest dynamics plot, Gansu province

    图  2  甘肃小陇山6 hm2样地内40个物种的平均木材密度与种内木材密度变异系数的相关性

    注:***: P<0.001;黑色或红色实心分别代表木材密度低于或高于平均值的主要树种。Black or red solid circles indicate species with wood density below or above average.

    Figure  2.  The correlation between species-based mean wood density and the coefficient of variation in the 6 hm2Xiaolong Mountains forest dynamics plot, Gansu province

    图  3  甘肃小陇山针阔混交林6 hm2样地木材密度群落加权平均值(群落加权方差)在考虑(不考虑)种内差异时的空间分异

    Figure  3.  Spatial distribution of community-weighted mean (or community-weighted variance) of wood density (individual-based or species-based) of adults (DBH ≥ 10 cm) in the 6 hm2 Xiaolong Mountains forest dynamics plot, Gansu province

    图  4  10个非生物因子-木材密度CWM(不考虑种内差异时)回归趋势

    注:***: P <0.001; **: P <0.01; *: P <0.05; ns: 无显著差异 no significant difference.

    Figure  4.  Relationship between community-weighted mean of wood density(species-based)and 10 abiotic factors in 20 m × 20 m quadrats(DBH ≥ 10 cm)in the 6 hm2 plot(n = 150)

    图  5  3个生物因子-木材密度CWV(考虑、不考虑种内差异)回归趋势

    注:***: P <0.001; **: P <0.01; *: P <0.05; ns: 无显著差异 no significant difference.

    Figure  5.  Relationship between community-weighted variance of wood density (individual-based or species-based) and three biotic factors in 20 m × 20 m quadrats (DBH ≥ 10 cm) in the 6 hm2 plot (n = 150)

    图  6  木材密度群落加权平均值与方差在考虑与不考虑种内差异时的差异

    注:***: P <0.001; ns: 无显著差异 no significant difference.

    Figure  6.  The differences between species-based wood density values and individual-based values in the 6 hm2 Xiaolong Mountains forest dynamics plot, Gansu province

    图  7  生境因子对基于物种水平与个体水平的木材密度群落加权平均值与方差的影响的标准化平均效应

    注:***: P <0.001; **: P <0.01; *: P <0.05; ns: 无显著差异 no significant difference.

    Figure  7.  The standardized mean effects of predictor variables for species-based (and individual-based) community-weighted mean wood density and community-weighted variance in the 6 hm2 Xiaolong Mountains forest dynamics plot, Gansu province

    2  附录B 非生物因子(10个)-木材密度CWV(不考虑种内差异时)回归趋势

    注:***: P <0.001; **: P <0.01; *: P <0.05; ns: 无显著差异 no significant difference.

    2.  Appendix B. Relationship between community-weighted variance of wood density(species-based)and 10 abiotic factors in 20 m × 20 m quadrats(DBH ≥ 10 cm)in the 6 hm2 plot (n = 150)

    3  附录C 非生物因子(10个)-木材密度CWV(考虑种内差异时)回归趋势

    注:***: P <0.001; **: P <0.01; *: P <0.05; ns: 无显著差异 no significant difference.

    3.  Appendix C. Relationship between community-weighted variance of wood density (individual-based) and 10 abiotic factors in 20 m × 20 m quadrats (DBH ≥ 10 cm) in the 6 hm2 plot (n = 150)

    5  附录E 甘肃小陇山暖温带针阔混交林6 hm2样地5个物种(DBH≥10 cm)空间分布

    5.  Appendix E. Spatial distribution of five species (DBH ≥ 10 cm) in a 6 hm2 plot Xiaolong Mountain forest dynamics plot, Gansu province

    1  附录A 非生物因子-木材密度CWM(考虑种内差异时)回归趋势

    注:***: P <0.001; **: P <0.01; *: P <0.05; ns: 无显著差异 no significant difference.

    1.  Appendix A. Correlations between community-weighted mean of wood density(individual-based)and abiotic factors in the 6 hm2 plot (n = 150)

    1  附录F 甘肃小陇山6 hm2样地40个物种的平均木材密度及种内变异系数

    1.   Appendix F. The species-based mean wood densities and the coefficient of variation in the 6 hm2 Xiaolong Mountain forest dynamics plot, Gansu province

    物种Species木材密度Wood density/(g/cm3)变异系数CV/%样本数n
    华山松 Pinus armandii0.407±0.05112.64 108
    冬瓜杨 Populus purdomii0.420±0.06114.46 7
    粉椴 Tilia oliveri0.429±0.07116.43 21
    山杨 Populus davidiana0.454±0.0429.35102
    光叶泡花树 Meliosma cuneifolia var. glabriuscula0.459±0.07917.20 14
    红皮柳 Salix sinopurpurea0.472±0.0377.8915
    膀胱果 Staphylea holocarpa0.502±0.12925.62 8
    香椿 Toona sinensis0.480±0.0347.148
    刺楸 Kalopanax septemlobus0.480±0.0347.1815
    青榨槭 Acer davidii0.492±0.0438.8241
    坚桦 Betula chinensis0.511±0.06112.04 18
    青皮槭 Acer cappadocicum0.514±0.0377.1711
    红麸杨 Rhus punjabensis var. sinica0.517±0.05310.16 127
    青麸杨 Rhus potaninii0.521±0.07414.26 75
    红桦 Betula albosinensis0.523±0.0244.6310
    建始槭 Acer henryi0.529±0.0509.4215
    灯台树 Cornus controversa0.534±0.05610.41 54
    领春木 Euptelea pleiosperma0.542±0.0325.8138
    榆树 Ulmus pumila0.562±0.06010.58 39
    白桦 Betula platyphylla0.568±0.05710.04 567
    春榆 Ulmus davidiana var. japonica0.568±0.0437.62183
    小叶乌药 Lindera aggregata var. playfairii0.578±0.0478.21190
    木姜子 Litsea pungens0.575±0.0478.197
    象蜡树 Fraxinus platypoda0.589±0.05910.02 23
    湖北花楸 Sorbus hupehensis0.594±0.0406.7814
    苦树 Picrasma quassioides0.596±0.09215.36 7
    甘肃山楂 Crataegus kansuensis0.599±0.0508.3018
    多毛樱桃 Cerasus polytricha0.601±0.0396.4567
    水榆花楸 Sorbus alnifolia0.621±0.0497.9264
    白蜡树 Fraxinus chinensis0.630±0.06510.29 6
    五角枫 Acer pictum subsp. mono0.632±0.0385.9523
    三桠乌药 Lindera obtusiloba0.641±0.0477.37105
    微毛樱桃 Cerasus clarofolia0.639±0.07511.69 16
    铁木 Ostrya japonica0.646±0.0385.8875
    湖北海棠 Malus hupehensis0.647±0.0467.1518
    红椋子 Cornus hemsleyi0.661±0.0609.0298
    锐齿槲栎 Quercus aliena var. acutiserrata0.663±0.0507.601827
    蒙古栎 Quercus mongolica0.672±0.0446.5829
    唐棣 Amelanchier sinica0.702±0.0223.1440
    刺叶高山栎 Quercus spinosa0.784±0.0313.9019
    平均值 average value0.564±0.0929.46
    下载: 导出CSV
  • [1] 刘晓娟, 马克平, 2015. 植物功能性状研究进展[J]. 中国科学: 生命科学, 45(4): 325-339.
    [2] 苏巧灵, 李安民, 袁士云, 等, 2020. 甘肃小陇山暖温带针阔混交林物种组成和群落结构[J]. 应用生态学报, 31(10): 3305-3312.
    [3] 苏田, 2019. 中国东部岛屿木本植物导管变异及其与叶片-木质性状耦合[D]. 华东师范大学, 1-2.
    [4] 唐青青, 黄永涛, 丁易, 等, 2016. 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异[J]. 生物多样性, 24(3): 262-270.
    [5] Anten Niels P R, Schieving F, 2010. The role of wood mass density and mechanical constraints in the economy of tree architecture [J]. American Naturalist, 175(2): 250-260.
    [6] Baraloto C, Paine C E T. , Patiño S, et al, 2010. Functional trait variation and sampling strategies in species-rich plant communities. Functional [J] Ecology, 24(1): 208-216.
    [7] Bernard-Verdier M, Navas M L, Vellend M, et al, 2012. Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland [J]. Journal of Ecology, 100(6): 1422-1433.
    [8] Burnham K P, Anderson D R, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach [M]. New York: Springer.
    [9] Chave J, Muller-Landau H C, Baker T R, et al, 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species [J]. Ecological Applications, 16(6): 2356-2367.
    [10] Chave J, Coomes D, Jansen S, et al, 2009. Towards a worldwide wood economics spectrum [J]. Ecology Letters, 12(4): 351-366.
    [11] Chesson P, 2000. Mechanisms of maintenance of species diversity [J]. Annual Review of Ecology and Systematics, 31(1): 343-366.
    [12] Chapman J, McEwan R, 2018. The Role of Environmental Filtering in Structuring Appalachian Tree Communities: Topographic Influences on Functional Diversity Are Mediated through Soil Characteristics [J]. Forests, 9(1): 19.
    [13] Davies S, Tan S, Lafrankie J, et al, 2006. Soil-Related Floristic Variation in a Hyperdiverse Dipterocarp Forest[M]//Roubik D W, Sakai S, Hamid Karim A A. Pollination ecology and the rainforest: sarawak studies. New York: Springer, 22-34.
    [14] Des Roches S, Post D M, Turley N E, et al, 2018. The ecological importance of intraspecific variation [J]. Nature Ecology & Evolution, 2: 57-64.
    [15] Fajardo A, 2018. Insights into intraspecific wood density variation and its relationship to growth, height and elevation in a treeline species [J]. Plant Biology, 20(3): 456-464.
    [16] Garnier E, Cortez J, Billès G, et al, 2004. Plant functional markers capture ecosystem properties during secondary succession [J]. Ecology, 85 (9): 2630-2637.
    [17] Garnier E, Navas M L, 2011. A trait-based approach to comparative functional plant ecology: Concepts, methods and applications for agroecology. A review [J]. Agronomy for Sustainable Development, 32 (2): 365-399.
    [18] Grime J. P, 2006. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences [J]. Journal of Vegetation Science, 17 (2): 255-260.
    [19] Gunatilleke C V S, Gunatilleke I A U N, Esufali S, et al, 2006. Species-habitat associations in a Sri Lankan dipterocarp forest [J]. Journal of Tropical Ecology, 22(4): 371-384.
    [20] Gleason S M, Westoby M, Jansen S, et al, 2016. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species [J]. New Phytologist, 209(1): 123-136.
    [21] Hacke U G, Sperry J S, Pockman W T, et al, 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure [J]. Oecologia, 126(4): 457-461.
    [22] John R, Dalling J W, Harms, K E, et al, 2007. Soil nutrients influence spatial distributions of tropical tree species [J]. Proceedings of the National Academy of Sciences, 104(3): 864-869.
    [23] Kraft N J B, Valencia R, Ackerly D D, 2008. Functional traits and niche-based tree community assembly in an Amazonian forest [J]. Science, 322(5901): 580-582.
    [24] Kraft N J B, Metz M R, Condit R S, et al, 2010. The relationship between wood density and mortality in a global tropical forest dataset [J]. New Phytologist, 188(4): 1124-1136.
    [25] Kunstler G, Falster D, Coomes D A, et al, 2016. Plant functional traits have globally consistent effects on competition [J]. Nature, 529(7585): 204-207.
    [26] Lavorel S, Grigulis K, McIntyre S, et al, 2008. Assessing functional diversity in the field – methodology matters![J]. Functional Ecology, 22: 134-147.
    [27] Larjavaara M, Muller-Landau H C, 2010. Rethinking the value of high wood density [J]. Functional Ecology, 24(4): 701-705.
    [28] McCulloh K, Meinzer F, Sperry J, et al, 2011. Comparative hydraulic architecture of tropical tree species representing a range of successional stages and wood density[J]. Oecologia, 167(1): 27-37. doi:  10.1007/s00442-011-1973-5
    [29] Osunkoya O O, Sheng T K, Mahmud N A, et al, 2007. Variation in wood density, wood water content, stem growth and mortality among twenty-seven tree species in a tropical rainforest on Borneo Island [J]. Austral Ecology, 32(2): 191-201.
    [30] Pérez-Harguindeguy N, Díaz S, Garnier E, et al, 2013. New handbook for standardised measurement of plant functional traits worldwide [J]. Australian Journal of Botany, 61(3): 167-234.
    [31] Poorter L, van der Sande M, Arets E, et al, 2017. Biodiversity and climate determine the functioning of Neotropical forests [J]. Global Ecology and Biogeography, 26: 1423-1434.
    [32] Sonnier G, Shipley B, Navas M L, 2010. Quantifying relationships between traits and explicitly measured gradients of stress and disturbance in early successional plant communities [J]. Journal of Vegetation Science, 21(6): 1014-1024.
    [33] Siefert A, Violle C, Chalmandrier L, et al, 2015. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities [J]. Ecology Letters, 18(12): 1406-1419.
    [34] Sperry J S, Meinzer F C, Mcculloh K A, 2008. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees [J]. Plant Cell & Environment, 31(5): 632-645.
    [35] Stahl U, Kattge J, Reu B, et al, 2013. Whole-plant trait spectra of North American woody plant species reflect fundamental ecological strategies [J]. Ecosphere, 4(10): Article 128.
    [36] Sungpalee W, Itoh A, Kanzaki M, et al, 2009. Intra- and interspecific variation in wood density and fine-scale spatial distribution of stand-level wood density in a northern Thai tropical montane forest [J]. Journal of Tropical Ecology, 25(4): 359-370.
    [37] Swenson N, Enquist B, 2007. Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community-wide variation across latitude and elevation [J]. American Journal of Botany, 94(3): 451-459.
    [38] Swenson N, Hulshof C, Katabuchi M, et al, 2020. Long-term shifts in the functional composition and diversity of a tropical dry forest: a 30-yr study [J]. Ecological Monographs, 90(3): e01408.
    [39] Violle C, Enquist B J, McGill B J, et al, 2012. The return of the variance: intraspecific variability in community ecology [J]. Trends in Ecology and Evolution, 27(4): 244-252.
    [40] Wright I, Reich P, Westoby M, et al, 2004. The world-wide leaf economics spectrum [J]. Nature, 428(6985): 821-827.
    [41] Wright S J, Kitajima K, Kraft N J B, et al, 2010. Functional traits and the growth–mortality trade-off in tropical trees [J]. Ecology, 91(12): 3664-3674.
    [42] Zuur A, Ieno E N, Walker N, et al, 2009. Mixed Effects Models and Extensions in Ecology With R [M]. New York: Springer.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  867
  • HTML全文浏览量:  369
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-28
  • 网络出版日期:  2021-10-22
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回

    关于网站迁移的通知

     尊敬的各位专家、读者:

    本刊网站将于6月28日起迁移至中国林业科学研究院期刊网(https://journals.caf.ac.cn/ldstxtybhxb/),届时旧网址http://www.ldstxtybhxb.com/将停止访问,如需投稿请直接登录http://edit.caf.ac.cn/ldstxtybhxb。由此给您带来不便,敬请谅解!

    如有任何问题,请及时联系编辑部,Tel:010-62889503;E-mail:ldstxtybh@caf.ac.cn。

     

    陆地生态系统与保护学报

    2024-06-25