留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物挥发性有机物释放对气象因子的响应研究

黄润霞 祁军 周本智 王灵玲 羊美娟 汤丽萍 王利仙

黄润霞, 祁军, 周本智, 王灵玲, 羊美娟, 汤丽萍, 王利仙. 植物挥发性有机物释放对气象因子的响应研究[J]. 陆地生态系统与保护学报, 2021, 1(2): 53-60. doi: 10.12356/j.2096-8884.2021-0010
引用本文: 黄润霞, 祁军, 周本智, 王灵玲, 羊美娟, 汤丽萍, 王利仙. 植物挥发性有机物释放对气象因子的响应研究[J]. 陆地生态系统与保护学报, 2021, 1(2): 53-60. doi: 10.12356/j.2096-8884.2021-0010
Runxia HUANG, Jun QI, Benzhi ZHOU, Linglin WANG, Meijuan YANG, Liping TANG, Lixian WANG. Responses of Biogenic Volatile Organic Compounds to Meteorological Factors: Literature Reviews[J]. Terrestrial Ecosystem and Conservation, 2021, 1(2): 53-60. doi: 10.12356/j.2096-8884.2021-0010
Citation: Runxia HUANG, Jun QI, Benzhi ZHOU, Linglin WANG, Meijuan YANG, Liping TANG, Lixian WANG. Responses of Biogenic Volatile Organic Compounds to Meteorological Factors: Literature Reviews[J]. Terrestrial Ecosystem and Conservation, 2021, 1(2): 53-60. doi: 10.12356/j.2096-8884.2021-0010

植物挥发性有机物释放对气象因子的响应研究

doi: 10.12356/j.2096-8884.2021-0010
基金项目: 浙江省省院合作林业科技项目(2020SY06);浙江省科技计划项目(2021C02005)
详细信息
    作者简介:

    黄润霞:E-mail: runxia.huang@foxmail.com

    通讯作者:

    E-mail: benzhi_zhou@126.com

  • 中图分类号: Q945

Responses of Biogenic Volatile Organic Compounds to Meteorological Factors: Literature Reviews

  • 摘要: 植物挥发性有机物(biogenic volatile organic compounds, BVOCs)是植物次生代谢产物之一,可以抵御生物和非生物胁迫,具有重要的生理和生态学意义。本文概述了水分、温度、二氧化碳和臭氧浓度及光照变化对BVOCs释放的影响作用以及影响机理。BVOCs总量及其特定组分的释放对水分、温度、二氧化碳和臭氧浓度及光照的响应并不一致,可能呈现出增加、降低、先增加后降低、没有明显变化等不同的响应趋势。针对当前我国在环境胁迫条件下的植物BVOCs释放组分和释放规律等方面的研究现状,对今后的研究方向进行了展望,建议加强探究BVOCs释放的主导因子以及对多个气象因子的综合响应。
  • [1] 何超, 慕航, 杨璐, 等, 2021. 中国暖季近地面臭氧浓度空间格局演变及主要气象驱动因素[J]. 环境科学, 42(9): 4168-4179.
    [2] 李品, 周慧敏, 冯兆忠, 2021. 臭氧污染、氮沉降和干旱胁迫交互作用对杨树叶和细根非结构性碳水化合物的影响[J]. 环境科学, 42(2): 1004-1012.
    [3] 辛月, 高峰, 冯兆忠, 2016. 不同基因型杨树的光合特征与臭氧剂量的响应关系[J]. 环境科学, 37(6): 2359-2367.
    [4] 赵辉, 郑有飞, 曹嘉晨, 等, 2017. 大气臭氧污染对冬小麦气孔吸收通量的影响机制及其时空格局[J]. 环境科学, 38(1): 412-422.
    [5] Aaltonen H, Aalto J, Kolari P, et al, 2013. Continuous VOC flux measurements on boreal forest floor[J]. Plant and Soil, 369: 241-256.
    [6] Acton W J F, Jud W, Ghirardo A, et al, 2018. The effect of ozone fumigation on the biogenic volatile organic compounds (BVOCs) emitted from Brassica napus above- and below-ground[J]. PLoS ONE, 13(12): e0208825.
    [7] Alessio, Fortunati, Csengele, et al, 2008. Isoprene emission is not temperature-dependent during and after severe drought-stress: a physiological and biochemical analysis[J]. The Plant Journal, 55: 687-697.
    [8] Amélie S, Elena O, Henri W, et al, 2017 [2021-05-29]. Chronic drought decreases anabolic and catabolic BVOC emissions of Quercus pubescens in a Mediterranean forest[J/OL]. Frontiers in Plant Science, 8: 71. https://doi.org/10.3389/fpls.2017.00071.
    [9] Behnke K, Ghirardo A, Janz D, et al, 2013. Isoprene function in two contrasting poplars under salt and sunflecks[J]. Tree Physiology, 33(6): 562-578.
    [10] Blanch J S, Peñuelas J, Llusià J, 2007. Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex[J]. Physiol Plant, 131(2): 211-225.
    [11] Bourtsoukidis E, Kawaletz H, Radacki D, et al, 2014. Impact of flooding and drought conditions on the emission of volatile organic compounds of Quercus robur and Prunus serotina[J]. Trees, 28(1): 193-204.
    [12] Brilli F, Tricoli D, Fares S, et al, 2008. The use of branch enclosures to assess direct and indirect effects of elevated CO2 on photosynthesis, respiration and isoprene emission of Populus alba leaves[J]. iForest - Biogeosciences and Forestry, 1(1): 49-54.
    [13] Calfapietra C, Wiberley A E, Falbel T G, et al, 2007. Isoprene synthase expression and protein levels are reduced under elevated O3 but not under elevated CO2 (FACE) in field-grown aspen trees[J]. Plant, Cell & Environment, 30(5): 654-661.
    [14] Calfapietra C, Fares S, Loreto F, 2009. Volatile organic compounds from Italian vegetation and their interaction with ozone[J]. Environmental Pollution, 157(5): 1478-1486.
    [15] Calfapietra C, Scarascia M G, Karnosky D F, et al, 2008. Isoprene emission rates under elevated CO2and O3 in two field-grown aspen clones differing in their sensitivity to O3[J]. New Phytologist, 179(1): 55-61.
    [16] Carriero G, Brunetti C, Fares S, et al, 2016. BVOC responses to realistic nitrogen fertilization and ozone exposure in silver birch[J]. Environmental Pollution, 213: 988-995.
    [17] Dani K G S, Jamie I M, Prentice I C, et al, 2014. Increased ratio of electron transport to net assimilation rate supports elevated Isoprenoid emission rate in eucalypts under drought[J]. Plant Physiology, 166(2): 1059-1072.
    [18] Dudareva N, Klempien A, Muhlemann J K, et al, 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds[J]. New Phytologist, 198(1): 16-32.
    [19] Effah E, Holopainen J K, Mccormick A C. et al, 2019. Potential roles of volatile organic compounds in plant competition[J]. Perspectives in Plant Ecology Evolution and Systematics, 38: 58-63.
    [20] Eller A S D, Young L L, Trowbridge A M, et al, 2016. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest[J]. Oecologia, 180(2): 345-358
    [21] Fares S, Barta C, Brilli F, et al, 2006. Impact of high ozone on isoprene emission, photosynthesis and histology of developing Populus alba leaves directly or indirectly exposed to the pollutant[J]. Physiologia Plantarum, 128(3): 456-465.
    [22] Fares S, Oksanen E, Lännenpää M, et al, 2010. Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations[J]. Photosynthesis Research, 104(1): 61-74.
    [23] Feng Z, Yuan X, Fares S, et al, 2019. Isoprene is more affected by climate drivers than monoterpenes: a meta-analytic review on plant isoprenoid emissions[J]. Plant, Cell & Environment, 42(6): 1939-1949.
    [24] Funk J L, Mak J E, Lerdau M T, 2004. Stress-induced changes in carbon sources for isoprene production in Populus deltoides[J]. Plant, Cell & Environment, 27(6): 747-755.
    [25] Guidolotti G, Pallozzi E, Gavrichkova O, et al, 2019. Emission of constitutive isoprene, induced monoterpenes, and other volatiles under high temperatures in Eucalyptus camaldulensis: a 13C labelling study[J]. Plant, Cell & Environment, 42(6): 1929-1938.
    [26] Holopainen J K, Gershenzon J, 2010. Multiple stress factors and the emission of plant VOCs[J]. Trends in Plant Science, 15(3): 176-184.
    [27] Huang J, Hartmann H, Hellen H, et al, 2018. New perspectives on CO2, temperature, and light effects on BVOC emissions using online measurements by PTR-MS and cavity ring-down spectroscopy[J]. Environmental Science & Technology, 52(23): 13811-13823.
    [28] IPCC, 2014. Climate Change 2014: synthesis report: contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on Climate Change[M]. Geneva, Switzerland: IPCC.
    [29] Jardine K, Chambers J Q, Alves E G, et al, 2014. Dynamic balancing of isoprene carbon sources reflects photosynthetic and photorespiratory responses to temperature stress[J]. Plant Physiology, 166(4): 2051-2064.
    [30] Jardine K, Jardine A, Holm J A, et al, 2017. Monoterpene ‘thermometer’ of tropical forest-atmosphere response to climate warming[J]. Plant, Cell & Environment, 40(3): 441-452.
    [31] Jonsson M, Lindkvist A, Anderson P, 2005. Behavioural responses in three ichneumonid pollen beetle parasitoids to volatiles emitted from different phenological stages of oilseed rape[J]. Entomologia Experimentalis et Applicata, 115(3): 363-369.
    [32] Kappers I F, Hoogerbrugge H, Bouwmeester H J, et al, 2011. Variation in herbivory-induced volatiles among cucumber (Cucumis sativus L.) varieties has consequences for the attraction of carnivorous natural enemies[J]. Journal of Chemical Ecology, 37(2): 150-160.
    [33] KivimäEnpää M, Ghimire R P, Sutinen S, et al, 2016. Increases in volatile organic compound emissions of Scots pine in response to elevated ozone and warming are modified by herbivory and soil nitrogen availability[J]. European Journal of Forest Research, 135(2): 343-360.
    [34] Kreuzwieser J, Cojocariu C, Jussen V, et al, 2002. Elevated atmospheric CO2 causes seasonal changes in carbonyl emissions from Quercus ilex[J]. New Phytologist, 154(2): 327-333.
    [35] Lavoir A V, Staudt M, Schnitzler J P, et al, 2009. Drought reduced monoterpene emissions from the evergreen Mediterranean oak Quercus ilex: results from a throughfall displacement experiment[J]. Biogeosciences, 6(7): 211-214.
    [36] Li D, Chen Y, Shi Y, et al, 2009. Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba[J]. Bulletin of Environmental Contamination and Toxicology, 82(4): 473-477.
    [37] Lindwall F, Svendsen S S, Nielsen C S, et al, 2016. Warming increases isoprene emissions from an arctic fen[J]. Science of the Total Environment, 553: 297-304.
    [38] Lichtenthaler H K, 2007. Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance[J]. Photosynthesis Research, 92: 163-179.
    [39] Llusià J, Penuelas J, Gimeno B S, 2002. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations[J]. Atmospheric Environment, 36(24): 3931-3938.
    [40] Logan B A, Monson R K, Potosnak M J, 2000. Biochemistry and physiology of foliar isoprene production[J]. Trends in Plant Science, 5: 477-481.
    [41] Loreto F, Schnitzler, 2010. Abiotic stresses and induced BVOCs[J]. Trends in Plant Science, 15(3): 155-166.
    [42] Loreto F, Fischbach R J, Schnitzler J, et al, 2001. Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations[J]. Global Change Biology, 7(6): 709-717.
    [43] Loreto F , Barta C , Brilli F , et al, 2006. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature[J]. Plant, Cell & Environment, 29(9): 1820-1828.
    [44] Magel E, Mayrhofer S, Müller A, et al, 2006. Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves[J]. Atmospheric Environment, 40: 138-151.
    [45] Mäki M, Heinonsalo J, Hellén H, et al, 2017. Contribution of understorey vegetation and soil processes to boreal forest isoprenoid exchange[J]. Biogeosciences, 14(5): 1055-1073.
    [46] Meeningen Y V , Schurgers G , Rinnan R , et al, 2017. Isoprenoid emission response to changing light conditions of English oak, European beech and Norway spruce[J]. Biogeosciences, 14(18): 4045-4060.
    [47] Mccormick C, Liliana A, 2016. Can plant–natural enemy communication withstand disruption by biotic and abiotic factors?[J]. Ecology and Evolution, 6(23): 8569-8582.
    [48] Moukhtar S, Couret C, Rouil L, et al, 2006. Biogenic volatile organic compounds (BVOCs) emissions from Abies alba in a French forest[J]. Science of the Total Environment, 354: 232–245.
    [49] Niinemets Ü, Loreto F, Reichstein M, 2004. Physiological and physicochemical controls on foliar volatile organic compound emissions[J]. Trends in Plant Science, 9(4): 180–186.
    [50] Nishimura H, Shimadera H, Kondo A, et al, 2015. Evaluation of light dependence of monoterpene emission and its effect on surface ozone concentration[J]. Atmospheric Environment, 104: 143-153.
    [51] Nogués I, Muzzini V, Loreto F, et al, 2015. Drought and soil amendment effects on monoterpene emission in rosemary plants[J]. Science of the Total Environment, 538: 768-778.
    [52] Ormeño E, Mévy J P, Vila B, et al, 2007. Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species[J]. Chemosphere, 67: 276-284.
    [53] Pegoraro E, Rey A, Bobich E G, et al, 2004. Effect of CO2 concentration and vapour pressure deficit on isoprene emission from leaves of Populus deltoides during drought[J]. Functional Plant Biology, 31(12): 1137-1147.
    [54] Penuelas J, Sardans J, Llusia J, et al, 2010. Higher allocation to low cost chemical defenses in invasive species of Hawaii[J]. Journal of Chemical Ecology, 36(11): 1255-1270.
    [55] Penuelas J, Staudt M, 2010. BVOCs and global change[J]. Trends in Plant Science, 15(3): 133-144.
    [56] Possell M, Hewitt C N, 2011. Isoprene emissions from plants are mediated by atmospheric CO2 concentrations[J]. Global Change Biology, 17(4): 1595-1610.
    [57] RäIsäNen T, Ryyppö A, Kellomäki S, 2008. Effects of elevated CO2 and temperature on monoterpene emission of Scots pine (Pinus sylvestris L.) [J]. Atmospheric Environment, 42(18): 4160-4171.
    [58] Rasulov B, Huve K, Bichele I, et al, 2010. Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis[J]. Plant Physiology, 154(3): 1558-1570.
    [59] Ryan A, Cojocariu C, Possell M, et al, 2009. Defining hybrid poplar (Populus deltoides × Populus trichocarpa) tolerance to ozone: identifying key parameters[J]. Plant, Cell & Environment, 32(1): 31-45.
    [60] Sharkey T D, Loreto F, Delwiche C F, 2010. High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves[J]. Plant, Cell & Environment, 14(3): 333-338.
    [61] Shen L, Jacob D J, Liu X, et al, 2019. An evaluation of the ability of the ozone monitoring instrument (OMI) to observe boundary layer ozone pollution across China: application to 2005-2017 ozone trends[J]. Atmospheric Chemistry and Physics, 19(9): 6551-6560.
    [62] Simpraga M, Verbeeck H, Demarcke M, et al, 2011. Clear link between drought stress, photosynthesis and biogenic volatile organic compounds in Fagus sylvatica L.[J]. Atmospheric Environment, 45(30): 5254-5259.
    [63] Simpraga M, Takabayashi J, Holopainen J K, 2016. Language of plants: where is the word?[J]. Journal of Integrative Plant Biology, 58(4): 343-349.
    [64] Skoczek A, Piesik D, Wendapiesik A, et al, 2017. Volatile organic compounds released by maize following herbivory or insect extract application and communication between plants[J]. Journal of Applied Entomology, 141(8): 630-643.
    [65] Staudt M, Joffre R, Rambal S, et al, 2001. Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters[J]. Tree Physiology, 21(7): 437-445.
    [66] Staudt M, Ennajah A, Mouillot F, et al, 2008. Do volatile organic compound emissions of Tunisian cork oak populations originating from contrasting climatic conditions differ in their responses to summer drought?[J]. Canadian Journal of Forest Research, 38(12): 2965-2975.
    [67] Staudt M, Morin X, Chuine I. et al, 2017. Contrasting direct and indirect effects of warming and drought on isoprenoid emissions from Mediterranean oaks[J]. Regional Environmental Change, 17(7): 2121-2133.
    [68] Vuorinen T, Nerg A-M, Vapaavuori E, et al, 2005. Emission of volatile organic compounds from two silver birch (Betula pendula Roth) clones grown under ambient and elevated CO2 and different O3 concentrations[J]. Atmospheric Environment, 39(7): 1185-1197.
    [69] Vuorinen T, Reddy G V P, Nerg A, et al, 2004a. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO2 concentration[J]. Atmospheric Environment, 38(5): 675-682.
    [70] Vuorinen T, Nerg A, Holopainen J K, 2004b. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling[J]. Environmental Pollution, 131(2): 305-311.
    [71] Way D A, Ghirardo A, Kanawati B, et al, 2013. Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene-and non-isoprene-emitting poplars[J]. New Phytologist, 200(2): 534-546.
    [72] Wiberley A E, Donohue A R, Meier M E. et al, 2008. Regulation of isoprene emission in Populus trichocarpa leaves subjected to changing growth temperature[J]. Plant, Cell & Environment. 31(2): 258-267.
    [73] Wu C, Pullinen I, Andres S, et al, 2015. Impacts of soil moisture on de novo monoterpene emissions from European beech, Holm oak, Scots pine, and Norway spruce[J]. Biogeosciences Discussions, 12(1): 177-191.
    [74] Wu R J, Zheng Y F, Hu C D, 2016. Evaluation of the chronic effects of ozone on biomass loss of winter wheat based on ozone flux-response relationship with dynamical flux thresholds[J]. Atmospheric Environment, 142: 93-103.
    [75] Yuan X , Calatayud V , Feng G , et al, 2016. Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar[J]. Plant, Cell & Environment, 39(10): 2276-2287
    [76] Zimmer W, Bruggemann N, Emeis S, et al, 2000. Process‐based modelling of isoprene emission by oak leaves[J]. Plant, Cell & Environment, 23(6): 585-595.
  • 加载中
计量
  • 文章访问数:  788
  • HTML全文浏览量:  381
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-29
  • 录用日期:  2021-11-08
  • 网络出版日期:  2021-12-29
  • 刊出日期:  2022-01-17

目录

    /

    返回文章
    返回

    关于网站迁移的通知

     尊敬的各位专家、读者:

    本刊网站将于6月28日起迁移至中国林业科学研究院期刊网(https://journals.caf.ac.cn/ldstxtybhxb/),届时旧网址http://www.ldstxtybhxb.com/将停止访问,如需投稿请直接登录http://edit.caf.ac.cn/ldstxtybhxb。由此给您带来不便,敬请谅解!

    如有任何问题,请及时联系编辑部,Tel:010-62889503;E-mail:ldstxtybh@caf.ac.cn。

     

    陆地生态系统与保护学报

    2024-06-25