留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮磷添加对杉木根际土壤丛枝菌根真菌和易提取球囊霉素的影响

王婷 沈益康 汪鹞雄 甘秉平 李全 刘美华 宋新章

王婷, 沈益康, 汪鹞雄, 甘秉平, 李全, 刘美华, 宋新章. 氮磷添加对杉木根际土壤丛枝菌根真菌和易提取球囊霉素的影响[J]. 陆地生态系统与保护学报, 2021, 1(2): 1-10. doi: 10.12356/j.2096-8884.2021-0018
引用本文: 王婷, 沈益康, 汪鹞雄, 甘秉平, 李全, 刘美华, 宋新章. 氮磷添加对杉木根际土壤丛枝菌根真菌和易提取球囊霉素的影响[J]. 陆地生态系统与保护学报, 2021, 1(2): 1-10. doi: 10.12356/j.2096-8884.2021-0018
Ting WANG, Yikang SHEN, Yaoxiong WANG, Bingping GAN, Quan LI, Meihua LIU, Xinzhang SONG. Effects of Nitrogen and Phosphorus Addition on Arbuscular Mycorrhizal Fungi and Easily Extracted Glomalin-related Soil Protein in the Chinese Fir Plantation[J]. Terrestrial Ecosystem and Conservation, 2021, 1(2): 1-10. doi: 10.12356/j.2096-8884.2021-0018
Citation: Ting WANG, Yikang SHEN, Yaoxiong WANG, Bingping GAN, Quan LI, Meihua LIU, Xinzhang SONG. Effects of Nitrogen and Phosphorus Addition on Arbuscular Mycorrhizal Fungi and Easily Extracted Glomalin-related Soil Protein in the Chinese Fir Plantation[J]. Terrestrial Ecosystem and Conservation, 2021, 1(2): 1-10. doi: 10.12356/j.2096-8884.2021-0018

氮磷添加对杉木根际土壤丛枝菌根真菌和易提取球囊霉素的影响

doi: 10.12356/j.2096-8884.2021-0018
基金项目: 国家“十三五”重点研发计划课题“人工林生产力形成的关键生理生态与环境控制机制”(2016YFD0600201)和浙江省“万人计划”科技创新领军人才项目(2018R52027)
详细信息
    作者简介:

    王婷:E-mail: wangting716@126.com

    通讯作者:

    E-mail: xzsong@126.com

  • 中图分类号: S791.27

Effects of Nitrogen and Phosphorus Addition on Arbuscular Mycorrhizal Fungi and Easily Extracted Glomalin-related Soil Protein in the Chinese Fir Plantation

  • 摘要:   目的  分析氮磷添加对杉木(Cunninghamia lanceolata)根际丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)性状和群落结构、易提取球囊霉素(Easily extracted glomalin-related soil protein,EE-GRSP)以及土壤理化性质的影响,为杉木人工林的可持续经营提供参考。  方法  以杉木人工林中的10 a杉木为研究对象,以未添加氮磷为控制对照组(N0: 0 kg N·hm−2·a−1 + P0: 0 mg P·kg−1),设置了不同水平的单独氮添加(N30 + P0: 30 kg N·hm−2·a−1 + 0 mg P·kg−1和N60 + P0: 60 kg N·hm−2·a−1 + 0 mg P·kg−1)、单独磷添加(N0 + P20: 0 kg N·hm−2·a−1 + 20 mg P·kg−1和N0 + P40: 0 kg N·hm−2·a−1 + 40 mg P·kg−1)及其复合作用(N30 + P20,N30 + P40,N60 + P20,N60 + P40),共9个处理,测定分析了AMF侵染率、孢子密度和易提取球囊霉素含量,并通过高通量测序技术分析了不同处理下杉木根际土壤AMF群落结构和多样性指数。  结果  1)在所有处理下,杉木根际土壤的AMF优势属均为球囊霉属(Glomus,> 95%)。2)与对照相比,单独氮添加显著提高了AMF的侵染率(191.5%—537.7%,P < 0.05)和孢子密度(59.2%—85.7%,P < 0.05),但显著降低了易提取球囊霉素的含量(9.8%—16.8%,P < 0.05)。N30 + P0处理显著提高了AMF丰富度(P < 0.05)。3)单独磷添加显著提高了AMF的侵染率(471.4%—658.3%,P < 0.05),显著降低了易提取球囊霉素的含量(8.9%—31.7%,P < 0.05),对孢子密度无显著影响(P > 0.05)。N0 + P40显著提高了AMF多样性(P < 0.05)。4)N30 + P20显著降低了AMF的侵染率(79.7%)、显著提高了孢子密度(79.3%)和易提取球囊霉素含量(22.5%)(P < 0.05);在N60处理下,磷添加对侵染率和易提取球囊霉素无显著影响(P > 0.05),N60 + P40显著降低了孢子密度(64.8%,P < 0.05)。5)土壤含水量与孢子密度和易提取球囊霉素含量呈显著正相关(P < 0.05),与AMF侵染率呈极显著负相关(P < 0.01)。孢子密度与有效氮磷比呈显著正相关(P < 0.05)。AMF侵染率与易提取球囊霉素呈极显著负相关(P < 0.01)。AMF多样性与土壤理化因子无显著相关性(P > 0.05)。  结论  在自然状态下,适当的磷添加(40 mg P·kg−1)或氮添加(30 kg N·hm−2·a−1)可以提高AMF的侵染率和多样性,从而促进AMF和杉木的共生关系,提高杉木生产力;在未来氮沉降增加的背景下,磷添加将提高土壤营养元素含量,降低AMF的侵染率,从而减弱AMF和杉木的共生关系。
  • 图  1  AMF群落花瓣图(OTU水平)

    Figure  1.  Petal diagram of AMF community at the OTU level

    图  2  不同氮磷添加下土壤AMF群落组成

    Figure  2.  Soil AMF community compositions under different N and P addition treatments in the Chinese fir plantation

    图  3  不同氮磷添加下杉木AMF的Shannon和Chao1指数

    Figure  3.  Shannon and Chao1 indexes of under different N and P addition treatments in the Chinese fir plantation

    图  4  不同氮磷添加下杉木AMF侵染率(a)和孢子密度(b)

    Figure  4.  AMF colonization rate (a) and spore density (b) under different N and P addition treatments in the Chinses fir plantation

    图  5  不同氮磷添加下杉木的易提取球囊霉素含量

    Figure  5.  EE-GRSP under different N and P addition in the Chinese fir plantation

    表  1  不同氮和磷添加下杉木土壤理化性质差异

    Table  1.   Differences of physical and chemical properties of Chinese fir soil under different nitrogen and Phosphorus Additions

    处理
    Treatment
    含水率
    Soil moisture/%
    pH值
    pH-value
    有效氮
    Available N/(mg·kg−1)
    有效磷
    Available P/(mg·kg−1)
    有效氮磷比
    AN∶AP
    全氮
    Total N/(g·kg−1)
    全磷
    Total P/(g·kg−1)
    N0+P0 29.52±2.60Aa4.59±0.09Ab31.36±5.82Bb3.39±1.38Aa9.99±2.72Cb0.88±0.31Bb0.12±0.04Bb
    N0+P20 24.49±0.94b4.78±0.13a61.97±4.66a3.35±0.38a18.54±1.06a1.62±0.36a0.23±0.05a
    N0+P40 27.79±2.36a4.80±0.03a37.33±3.42b3.70±0.25a10.09±0.31b0.87±0.10b0.17±0.02a
    N30+P0 31.65±3.73Aa4.76±0.15Aa34.72±8.08Ba1.74±0.55Ab20.41±2.02Ba0.79±0.20Ba0.11±0.01Bb
    N30+P2036.14±2.78a4.72±0.07a50.40±11.64a2.32±1.10b23.84±8.83a1.14±0.22a0.13±0.01ab
    N30+P4032.80±2.21a4.67±0.12a38.08±4.88a4.79±1.09a8.09±1.13b0.97±0.22a0.15±0.02a
    N60+P0 32.59±3.17Aa4.32±0.01Bb69.44±14.56Aa2.32±0.38Ab30.20±6.97Aa1.38±0.23Aa0.17±0.02Aa
    N60+P2031.04±1.32a4.79±0.15a46.29±11.98a3.36±1.15b14.09±2.19b1.12±0.39a0.14±0.03ba
    N60+P4030.84±5.15a4.60±0.10a54.13±11.27a5.60±1.23a9.74±1.13b1.30±0.34a0.18±0.03a
      注:对照(N0 + P0)。不同大写字母表示在P0下不同氮添加处理间差异显著(P < 0.05),不同小写字母表示在相同模拟氮沉降梯度下不同磷添加处理间差异显著(P < 0.05),下同。 The control(N0 + P0). Capital letters indicate significant differences among N addition treatments under the P0 condition (P < 0.05). Lowercase letters indicate significant differences among P addition treatments at the identical N addition treatments (P < 0.05). The same below.
    下载: 导出CSV

    表  2  氮磷添加对杉木AMF多样性、侵染率、孢子密度和易提取球囊霉素双因素方差分析

    Table  2.   Two-way ANOVA of effects of N and P addition on AMF diversity, colonization rate, spore density, and EE-GRSP in the Chinese fir plantation

    因素 Factors氮沉降 Nitrogen deposition磷添加 Phosphorus addition交互作用 Interaction
    F值
    F-Value
    显著性
    P Value
    F值
    F-Value
    显著性
    P Value
    F值
    F-Value
    显著性
    P Value
    Shannon指数 Shannon index0.9950.3891.6270.2242.3950.089
    Chao1指数 Chao1 index1.1970.3251.0290.3772.7940.058
    侵染率 Colonization rate129.0820.00016.6420.000309.3380.000
    孢子密度 Spore density166.9130.00095.3750.00039.7410.000
    易提取球囊霉素 EE-GRSP1.8300.1891.1400.3420.8640.504
    下载: 导出CSV

    表  3  AMF多样性、侵染率、孢子密度和易提取球囊霉素与土壤理化性质的相关性分析

    Table  3.   Spearman's correlation coefficients (r) for relationships between AMF diversity, colonization rate, spore density, EE-GRSP and soil properties

    因素 Factors土壤理化性质 Soil properties
    含水率
    Soil moisture
    pH值
    pH-value
    有效氮
    Available N
    有效磷
    Available P
    有效氮磷比AN∶AP全氮
    Total N
    全磷
    Total P
    Shannon指数
    Shannon index
    Chao1指数
    Chao1 index
    侵染率
    Colonization rate
    孢子密度
    Spore density
    易提取球囊霉素
    EE-GRSP
    Shannon指数
    Shannon index
    −0.0370.159−0.0310.112−0.086−0.0810.19610.462*0.078−0.2000.338
    Chao1指数
    Chao1 index
    −0.0160.318−0.227−0.103−0.016−0.298−0.2430.462*10.036−0.0050.285
    侵染率
    Colonization rate
    −0.506**0.428*0.046−0.1370.193−0.0270.2520.0780.0361−0.281−0.525**
    孢子密度
    Spore density
    0.662**0.0550.140−0.3180.385*0.156−0.295−0.200−0.005−0.28110.034
    易提取球囊霉素
    EE-GRSP
    0.450*−0.0770.366−0.0460.2340.324−0.0320.3380.285−0.525**0.0341
      注:* P < 0.05;**P < 0.01。
    下载: 导出CSV
  • [1] 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社.
    [2] 陈美领, 陈浩, 毛庆功, 等, 2016. 氮沉降对森林土壤磷循环的影响[J]. 生态学报, 36(16): 4965-4976.
    [3] 郭涛, 申鸿, 彭思利, 等, 2009. 氮、磷供给水平对丛枝菌根真菌生长发育的影响[J]. 植物营养与肥料学报, 15(3): 690-695.
    [4] 郭伟, 耿珍珍, 陈朝, 等, 2018. 模拟氮沉降增加对长白山红松和水曲柳菌根真菌群落结构及多样性的影响[J]. 生态环境学报, 27(1): 10-17.
    [5] 黄彬彬, 邢亚娟, 闫国永, 等, 2019. 兴安落叶松林球囊霉素相关土壤蛋白含量对年际间模拟氮沉降的响应[J]. 生态环境学报, 28(3): 446-454.
    [6] 胡家欣, 彭思利, 张栋, 等, 2020. 氮添加对不同林龄杨树人工林丛枝菌根真菌群落的影响[J]. 生态环境学报, 29(9): 60-67.
    [7] 雷学明, 沈芳芳, 雷学臣, 等, 2018. 模拟氮沉降和灌草去除对杉木人工林地土壤微生物群落结构的影响[J]. 生物多样性, 26(9): 962-971.
    [8] 蔺吉祥, 杨雨衡, 王英男, 等, 2015. 氮沉降对植物-丛枝菌根共生体影响的研究进展[J]. 草原与草坪, 35(3): 88-94.
    [9] 刘婷婷, 刘智蕾, 宋佳媚, 等, 2019. 不同温度与供氮水平下丛枝菌根真菌对水稻养分吸收的影响[J]. 土壤通报, 50(4): 885-890.
    [10] 梁霞, 刘爱琴, 马祥庆, 等, 2006. 不同杉木无性系磷素特性的比较[J]. 植物生态学报, 30(6): 1005-1011.
    [11] 明安刚, 刘世荣, 李华, 等, 2016. 近自然化改造对马尾松和杉木人工林生物量及其分配的影响[J]. 生态学报, 27(12): 3845-3852.
    [12] 牛利敏, 2017. 毛竹入侵及经营方式对土壤丛枝菌根真菌群落的影响及其机理研究[D]. 杭州: 浙江农林大学.
    [13] 盛萍萍, 刘润进, 李敏, 2011. 丛枝菌根观察与侵染率测定方法的比较[J]. 菌物学报, 30(4): 519-525.
    [14] 孙向伟, 王晓娟, 陈牧, 等, 2011. 生态环境因子对AM真菌孢子形成与分布的作用机制[J]. 草业学报, 20(1): 214-221.
    [15] 田慧, 刘晓蕾, 盖京苹, 等, 2009. 球囊霉素及其作用研究进展[J]. 土壤通报, 40(5): 1215-1220.
    [16] 王建, 周紫燕, 凌婉婷, 2016. 球囊霉素相关土壤蛋白的分布及环境功能研究进展[J]. 应用生态学报, 27(2): 634-642.
    [17] 王庆峰, 姜昕, 马鸣超, 等, 2018. 长期施用氮肥和磷肥对东北黑土丛枝菌根真菌群落组成的影响[J]. 中国农业科学, 51(17): 3315-3324.
    [18] 汪鹞雄, 李全, 沈益康, 等, 2021. 模拟氮沉降对杉木丛枝菌根真菌侵染率和球囊霉素的影响[J]. 生态学报, 41(1): 194-201.
    [19] 谢迎新, 张淑利, 冯伟, 等, 2010. 大气氮素沉降研究进展[J]. 中国生态农业学报, 18(4): 897-904.
    [20] 杨海水, 2013. 宿主植物对丛枝菌根真菌的影响—共生功能、地理分布及多样性[D]. 杭州: 浙江大学.
    [21] 张好强, 唐明, 张海涵, 2009. 土壤因子对柠条和沙棘根际AM真菌多样性及侵染状况的影响[J]. 土壤学报, 46(4): 721-724.
    [22] 张淑彬, 王幼珊, 殷晓芳, 等, 2017. 不同施磷水平下AM真菌发育及其对玉米氮磷吸收的影响[J]. 植物营养与肥料学报, 23(3): 649–657.
    [23] 赵一楠, 2017. 氮、磷添加及 AM 真菌调控对松嫩草地土壤养分与植物群落特征的影响[D]. 长春: 东北师范大学.
    [24] 甄莉娜, 王润梅, 周凤, 等, 2015. 不同施磷水平下 AM 真菌对羊草生长的影响[J]. 中国草地学报, 37(6): 56-61.
    [25] Aliasgharzad N, Mårtensson L M, Olsson P A, 2010. Acidification of a sandy grassland favours bacteria and disfavours fungal saprotrophs as estimated by fatty acid profiling[J]. Soil Biology and Biochemistry, 42(7): 1058-1064.
    [26] Bhadalung N N, Suwanarit A, Dell B, et al, 2005. Effects of long-term NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under a maize cropping system[J]. Plant and Soil, 270(1/2): 371-382.
    [27] Cheng Y, Ishimoto K, Kuriyama Y, et al, 2013. Ninety-year, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities[J]. Plant and Soil, 365: 397-407.
    [28] Chen Y H , Nguyen T H N, Qin J J, et al, 2018. Phosphorus assimilation of Chinese fir from two provenances during acclimation to changing phosphorus availability[J]. Environmental and Experimental Botany, 153: 21-34.
    [29] Egerton-Warburton L M, Allen E B, 2000. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient[J]. Ecological Applications, 10(2): 484-496.
    [30] Fang H, Mo J M, Peng S L, et al, 2007. Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China[J]. Plant and Soil, 297: 233-242.
    [31] Higo M, Azuma M, Kamiyoshihara Y, et al, 2020. Impact of phosphorus fertilization on tomato growth and arbuscular mycorrhizal fungal communities[J]. Microorganisms, 8(2): 178.
    [32] Janos D P, Garamszegi S, Beltran B, 2008. Glomalin extraction and measurement[J]. Soil Biology and Biochemistry. 40(3): 728-739.
    [33] Jia Y L, Yu G R, He N P, et al, 2014. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity[J]. Scientific Reports, 4: 3763.
    [34] Johnson N C, 2010. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales[J]. New Phytologist, 185: 631–647.
    [35] Koske R E, Walker C, 1984. Gigaspora erythropa, a New Species Forming Arbuscular Mycorrhizae[J]. Mycologia, 76(2): 250–255.
    [36] Li Q, Lei Z F, Song X Z, et al, 2018. Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo (Phyllostachys edulis) plantations under simulated nitrogen deposition[J]. Environmental Research Letters, 13(4): 044029.
    [37] Lin X G, Feng Y Z, Zhang H Y, et al, 2012. Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing[J]. Environmental Science & Technology, 46(11): 5764-5771.
    [38] Liu M H, Shen Y K, Li Q, et al, 2021. Arbuscular mycorrhizal fungal colonization and soil pH induced by nitrogen and phosphorus additions affects leaf C: N: P stoichiometry in Chinese fir ( Cunninghamia lanceolata ) forests[J]. Plant and Soil, 461: 421-440.
    [39] Lutgen E R, Muir-Clairmont D, Graham J, et al, 2003. Seasonality of arbuscular mycorrhizal hyphae and glomalin in a western Montana grassland[J]. Plant and Soil, 257(1): 71-83.
    [40] Ma X C, Geng Q H, Zhang H G, et al, 2020. Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multi-functionality[J]. The New phytologist, 229(5): 2957-2969.
    [41] Miller S P, Sharitz R R, 2000. Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species[J]. Functional Ecology, 14(6): 738-748.
    [42] Mo J M, Brown S, Xue J H, et al, 2007. Response of nutrient dynamics of decomposing pine (Pinus massoniana) needles to simulated N deposition in a disturbed and a rehabilitated forest in tropical China[J]. Ecological Research. 22(4): 649-658.
    [43] Smith S E, Smith F A, 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology, 62(1): 227-250.
    [44] Song X Z, Zhou G M, Gu H H, et al, 2015. Management practices amplify the effects of N deposition on leaf litter decomposition of the Moso bamboo forest[J]. Plant and Soil, 395(1/2): 391-400.
    [45] Tedersoo L, Bahram M, Zobel M, 2020. How mycorrhizal associations drive plant population and community biology[J]. Science, 367(6480): eaba1223.
    [46] Treseder K K, 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric co2 in field studies[J]. New Phytologist, 164(2): 347-355.
    [47] Van Diepen L T A, Lilleskov E A, Pregitzer K S, 2011. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests[J]. Molecular Ecology, 20(4): 799-811.
    [48] Veresoglou S D, Chen B D, Rillig M C, 2012. Arbuscular mycorrhiza and soil nitrogen cycling[J]. Soil Biology and Biochemistry, 46: 53-62.
    [49] Wu P F, Ma X Q, Tigabu M, et al, 2011. Root morphological plasticity and biomass production of two Chinese fir clones with high phosphorus efficiency under low phosphorus stress[J]. Canadian Journal of Forest Research, 41(2): 228-234.
    [50] Wu Q S, Li Y, Zou Y N, et al, 2015. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels[J]. Mycorrhiza, 25(2): 121-130
    [51] Yang Y R, Song Y Y, Scheller H V, et al, 2015. Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils[J]. Soil Biology and Biochemistry. 86(7): 146-158.
    [52] Yu G R, Jia Y L, He N P, et al, 2019. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 12(6): 424-429.
    [53] Zhang S Y, Luo P Y, Yang J F, et al, 2021. Responses of Arbuscular Mycorrhizal Fungi Diversity and Community to 41-Year Rotation Fertilization in Brown Soil Region of Northeast China[J]. Frontiers in Microbiology, 12: 1-14.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  955
  • HTML全文浏览量:  386
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 录用日期:  2021-12-16
  • 网络出版日期:  2022-01-08
  • 刊出日期:  2022-01-17

目录

    /

    返回文章
    返回

    关于网站迁移的通知

     尊敬的各位专家、读者:

    本刊网站将于6月28日起迁移至中国林业科学研究院期刊网(https://journals.caf.ac.cn/ldstxtybhxb/),届时旧网址http://www.ldstxtybhxb.com/将停止访问,如需投稿请直接登录http://edit.caf.ac.cn/ldstxtybhxb。由此给您带来不便,敬请谅解!

    如有任何问题,请及时联系编辑部,Tel:010-62889503;E-mail:ldstxtybh@caf.ac.cn。

     

    陆地生态系统与保护学报

    2024-06-25