留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

树木对二氧化碳浓度升高的生理生态响应

王兆国 王传宽

王兆国, 王传宽. 树木对二氧化碳浓度升高的生理生态响应[J]. 陆地生态系统与保护学报, 2021, 1(2): 39-52. doi: 10.12356/j.2096-8884.2021-0023
引用本文: 王兆国, 王传宽. 树木对二氧化碳浓度升高的生理生态响应[J]. 陆地生态系统与保护学报, 2021, 1(2): 39-52. doi: 10.12356/j.2096-8884.2021-0023
Zhaoguo WANG, Chuankuan WANG. Tree Ecophysiological Responses to Elevated Carbon Dioxide Concentration[J]. Terrestrial Ecosystem and Conservation, 2021, 1(2): 39-52. doi: 10.12356/j.2096-8884.2021-0023
Citation: Zhaoguo WANG, Chuankuan WANG. Tree Ecophysiological Responses to Elevated Carbon Dioxide Concentration[J]. Terrestrial Ecosystem and Conservation, 2021, 1(2): 39-52. doi: 10.12356/j.2096-8884.2021-0023

树木对二氧化碳浓度升高的生理生态响应

doi: 10.12356/j.2096-8884.2021-0023
基金项目: 国家重点研发项目(2016YFD0600201)
详细信息
    作者简介:

    王兆国:E-mail: 466735586@qq.com

    通讯作者:

    E-mail: Wangck-cf@nefu.edu.cn

  • 中图分类号: Q945.79

Tree Ecophysiological Responses to Elevated Carbon Dioxide Concentration

  • 摘要: 大气CO2浓度升高(eCO2)及其引发的气候暖化、降水格局改变等,对陆地生态系统服务功能和社会经济可持续发展产生重大影响。树木对eCO2的生理生态响应,将通过改变植被生产力和森林碳汇功能等,在减缓全球eCO2趋势和气候变化中发挥着重要作用。因此,全面理解并准确评估树木生理生态过程对eCO2的响应和反馈,可为应对全球和区域气候变化、进行森林“碳中和”决策等提供科学依据。围绕树木对eCO2的生理生态响应,综述eCO2对树木光合作用、呼吸作用、非结构性碳水化合物分配、叶片性状、树木生长和碳氮交互作用等的影响;然后评述eCO2与氮沉降、增温、干旱等全球变化因子对树木生理生态过程的联合影响;最后提出该领域亟待解决的3个科学问题:加强研究eCO2对树木自养呼吸的影响及其作用机理,探索eCO2背景下树木—微生物—土壤养分的相互作用关系,通过多因子控制实验综合探究eCO2、氮沉降、增温、降水格局改变等对树木生理生态的联合影响。
  • [1] 冯兆忠, 李品, 张国友, 等, 2020. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 44(5): 461-474.
    [2] 韩士杰, 周玉梅, 王琛瑞, 等, 2001. 红松幼苗对CO2浓度升高的生理生态反应[J]. 应用生态学报, 12(1): 27-30.
    [3] 侯颖, 2010. 川西亚高山复合群落中岷江冷杉和四种草本植物生长对CO2浓度和温度升高的响应及其机理研究[D]. 上海: 华东师范大学.
    [4] 牛书丽, 陈卫楠, 2020. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 44(5): 449-460.
    [5] 王淼, 郝占庆, 姬兰柱, 等, 2002. 高CO2浓度对温带三种针叶树光合光响应特性的影响[J]. 应用生态学报, 13(6): 646-650.
    [6] 周玉梅, 韩士杰, 张军辉, 等, 2002. 不同CO2浓度下长白山3种树木幼苗的光合特性[J]. 应用生态学报, 13(1): 41-44.
    [7] Acosta M, Radek P, Janouš D, et al, 2010. Stem respiration of Norway spruce trees under elevated CO2 concentration[J]. Biologia Plantarum, 54(4): 773-776.
    [8] Ainsworth E A, Long S P, 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2[J]. New Phytologist, 165(2): 351-371.
    [9] Ainsworth E A, Rogers A, 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions[J]. Plant, Cell & Environment, 30(3): 258-270.
    [10] Amthor J, 1989. Respiration and Crop Productivity[M]. New York: Springer.
    [11] Apgaua D M G, Tng D Y P, Forbes S J, et al, 2019. Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats[J]. Tree Physiology, 39(11): 1806-1820.
    [12] Aranjuelo I, Gorka E, Alvaro S-S, et al, 2015. Differential CO2 effect on primary carbon metabolism of flag leaves in durum wheat (Triticum durum Desf.)[J]. Plant, Cell & Environment, 38(12): 2780-2794.
    [13] Asshoff R, Zotz G, Korner C, 2006. Growth and phenology of mature temperate forest trees in elevated CO2[J]. Global Change Biology, 12(5): 848-861.
    [14] Assmann S, 2002. The cellular basis of guard cell sensing of rising CO2[J]. Plant, Cell & Environment, 22(6): 629-637.
    [15] Atwell B J, Henery M L, Rogers G S, et al, 2007. Canopy development and hydraulic function in Eucalyptus tereticornis grown in drought in CO2-enriched atmospheres[J]. Functional Plant Biology, 34(12): 1137-1149.
    [16] Avila R T, de Almeida W L, Costa L C, et al, 2020. Elevated air CO2 improves photosynthetic performance and alters biomass accumulation and partitioning in drought-stressed coffee plants[J]. Environmental and Experimental Botany, 177: 104148.
    [17] Ayub G, Smith R, Tissue D, et al, 2011. Impacts of drought on leaf respiration in darkness and light in Eucalyptus saligna exposed to industrial-age atmospheric CO2 and growth temperature[J]. New Phytologist, 190(4): 1003-1018.
    [18] Bader M K-F, Siegwolf R, Körner C, 2010. Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO2 enrichment[J]. Planta, 232(5): 1115-1125.
    [19] Bader M K-F, Leuzinger S, Keel S G, et al, 2013. Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project[J]. Journal of Ecology, 101(6): 1509-1519.
    [20] Bader M K-F, Mildner M, Baumann C, et al, 2016. Photosynthetic enhancement and diurnal stem and soil carbon fluxes in mature Norway spruce stand under elevated CO2[J]. Environmental and Experimental Botany, 124: 110-119.
    [21] Baig S, Medlyn B E, Mercado L M, et al, 2015. Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis[J]. Global Change Biology, 21(12): 4303-4319.
    [22] Bassirirad H, Griffin K L, Reynolds J F, et al, 1997. Changes in root NH4+ and NO3 absorption rates of loblolly and Ponderosa pine in response to CO2 enrichment[J]. Plant and Soil, 190(1): 1-9.
    [23] BassiriRad H, Gutschick V P, Lussenhop J, 2001. Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO2[J]. Oecologia, 126(3): 305-320.
    [24] Batterman S A, Hedin L O, van Breugel M, et al, 2013. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession[J]. Nature, 502(7470): 224-227.
    [25] Bouma T, De Visser R, Janssen J H J A, et al, 1994. Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect[J]. Physiologia Plantarum, 92(4): 585-594.
    [26] Brodribb T J, McAdam S A M, 2013. Unique responsiveness of angiosperm stomata to elevated CO2 explained by calcium signalling [J]. PLoS ONE, 8(11): e82057.
    [27] Brodribb T J, McAdam S A M, Jordan G J, et al, 2009. Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants [J]. New Phytologist, 183(3): 839-847.
    [28] Brodribb T J, Pittermann J, Coomes D A, 2012. Elegance versus speed: examining the competition between conifer and angiosperm trees [J]. International Journal of Plant Sciences, 173(6): 673-694.
    [29] Calfapietra C, De Angelis P, Gielen B, et al, 2007. Increased nitrogen-use efficiency of a short-rotation poplar plantation in elevated CO2 concentration [J]. Tree Physiology, 27(8): 1153-1163.
    [30] Calfapietra C, Tulva I, Kaurilind E, et al, 2005. Canopy profiles of photosynthetic parameters under elevated CO2 and N fertilization in a poplar plantation [J]. Environmental Pollution, 137(3): 525-535.
    [31] Callaway R, DeLucia E, Thomas E, et al, 1994. Compensatory responses of CO2 exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different CO2 and temperature regimes [J]. Oecologia, 98(2): 159-166.
    [32] Carey E, DeLucia E, Ball J, 1996. Stem maintenance and construction respiration in Pinus ponderosa grown in different concentration of atmospheric CO2 [J]. Tree Physiology, 16(1/2): 125-130.
    [33] Centritto M, Lee H J, Jarvis P, 1999. Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings. I. Growth, whole-plant water use efficiency and water loss [J]. New Phytologist, 141(1): 129-140.
    [34] Centritto M, Lucas M E, Jarvis P G, 2002. Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability [J]. Tree Physiology, 22(10): 699-706.
    [35] Ceulemans R, Mousseau M, 1994. Effects of elevated atmospheric CO2 on woody plants [J]. New Phytologist, 127(3): 425-446.
    [36] Chen Z, Ye S, Cao J, et al, 2021. Nitrogen fertilization modified the responses of Schima superba seedlings to elevated CO2 in subtropical China [J]. Plants, 10(2): 383.
    [37] Cook B I, Smerdon J E, Seager R, et al, 2014. Global warming and 21st century drying [J]. Climate Dynamics, 43(9/10): 2607-2627.
    [38] Crookshanks M, Taylor G, Broadmeadow M, 1998. Elevated CO2 and tree root growth: contrasting responses in Fraxinus excelsior, Quercus petraea and Pinus sylvestris [J]. New Phytologist, 138(2): 241-250.
    [39] Curtis P S, 1996. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide [J]. Plant, Cell & Environment, 19(2): 127-137.
    [40] Curtis P S, Wang X, 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology [J]. Oecologia, 113(3): 299-313.
    [41] De Graaff M-A, Van Groenigen K-J, Six J, et al, 2006. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis [J]. Global Change Biology, 12(11): 2077-2091.
    [42] De Kauwe M G, Medlyn B E, Tissue D T, 2021. To what extent can rising [CO2] ameliorate plant drought stress? [J]. New Phytologist, 231(6): 2118-2124.
    [43] De Kauwe M G, Medlyn B E, Zaehle S, et al, 2014. Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites [J]. New Phytologist, 203(3): 883-899.
    [44] Dieleman W I J, Luyssaert S, Rey A, et al, 2010. Soil N modulates soil C cycling in CO2-fumigated tree stands: a meta-analysis [J]. Plant, Cell & Environment, 33(12): 2001-2011.
    [45] Dieleman W I J, Vicca S, Dijkstra F A, et al, 2012. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature [J]. Global Change Biology, 18(9): 2681-2693.
    [46] Domec J-C, Smith D D, McCulloh K A, 2017. A synthesis of the effects of atmospheric carbon dioxide enrichment on plant hydraulics: implications for whole-plant water use efficiency and resistance to drought [J]. Plant, Cell & Environment, 40(6): 921-937.
    [47] Dusenge M E, Madhavji S, Way D A, 2020. Contrasting acclimation responses to elevated CO2 and warming between an evergreen and a deciduous boreal conifer [J]. Global Change Biology, 26(6): 3639-3657.
    [48] Duursma R A, Gimeno T E, Boer M M, et al, 2015. Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric [CO2] but tracks water availability [J]. Global Change Biology, 22(4): 1666–1676.
    [49] Duursma R A, Medlyn B E, 2012. MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to CO2 × drought interactions [J]. Geoscientific Model Development, 5(4): 919-940.
    [50] Edwards N T, Tschaplinski T, Norby R, 2002. Stem respiration increases in CO2-enriched sweetgum trees [J]. New Phytologist, 155(2): 239-248.
    [51] Eissenstat D M, Kucharski J M, Zadworny M, et al, 2015. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest [J]. New Phytologist, 208(1): 114-124.
    [52] Eissenstat D M, Yanai R D, 1997. Ecology of root life span [J]. Advances in Ecological Research, 27: 1-60.
    [53] Ellsworth D S, Anderson I C, Crous K Y, et al, 2017. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil [J]. Nature Climate Change, 7(4): 279-282.
    [54] Ellsworth D S, Thomas R, Crous K, et al, 2012. Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE [J]. Global Change Biology, 18(1): 223-242.
    [55] Farage, McKee, Long, 1998. Does a low nitrogen supply necessarily lead to acclimation of photosynthesis to elevated CO2? [J]. Plant Physiology, 118(2): 573-580.
    [56] Feng Z, Ruetting T, Pleijel H, et al, 2015. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2 [J]. Global Change Biology, 21(8): 3152-3168.
    [57] Finzi A C, Allen A S, DeLucia E H, et al, 2001. Forest litter production, chemistry, and decomposition following two years of free-air CO2 enrichment [J]. Ecology, 82(2): 470-484.
    [58] Finzi A C, DeLucia E H, Hamilton J G, et al, 2002. The nitrogen budget of a pine forest under free air CO2 enrichment [J]. Oecologia, 132(4): 567-578.
    [59] Finzi A C, Moore D J P, DeLucia E H, et al, 2006. Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest [J]. Ecology, 87(1): 15-25.
    [60] George K, Norby R J, Hamilton J G, et al, 2003. Fine-root respiration in a loblolly pine and sweetgum forest growing in elevated CO2 [J]. New Phytologist, 160(3): 511-522.
    [61] Ghannoum O, Phillips N G, Conroy J P, et al, 2010. Exposure to preindustrial, current and future atmospheric CO2 and temperature differentially affects growth and photosynthesis in Eucalyptus [J]. Global Change Biology, 16(1): 303-319.
    [62] Gielen B, Scarascia-Mugnozza G, Ceulemans R, 2003. Stem respiration of Populus species in the third year of free-air CO2 enrichment [J]. Physiologia Plantarum, 117(4): 500-507.
    [63] Gonzelez-Meller M A, Taneva L, Trueman R J, 2004. Plant respiration and elevated atmospheric CO2 concentration: cellular responses and global significance [J]. Annals of Botany, 94(5): 647-656.
    [64] Gunderson C A, Sholtis J D, Wullschleger S D, et al, 2002. Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment [J]. Plant, Cell & Environment, 25: 379-393.
    [65] Handa I T, Körner C, Hattenschwiler S, 2005. A test of the tree-line carbon limitation hypothesis by in situ CO2 enrichment and defoliation [J]. Ecology, 86(5): 1288-1300.
    [66] Haworth M, Elliott-Kingston C, McElwain J C, 2011. Stomatal control as a driver of plant evolution [J]. Journal of experimental botany, 62(8): 2419-2423.
    [67] Herrick J, Thomas R, 2001. No photosynthetic down-regulation in sweetgum trees (Liquidambar styraciflua L.) after three years of CO2 enrichment at the Duke Forest FACE experiment [J]. Plant, Cell & Environment, 24(1): 53-64.
    [68] Herrick J D, Maherali H, Thomas R B, 2004. Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment [J]. New Phytologist, 162(2): 387-396.
    [69] Högberg P, Nordgren A, Ågren G I, 2002. Carbon allocation between tree root growth and root respiration in boreal pine forest [J]. Oecologia, 132(4): 579-581.
    [70] Hungate B, Dijkstra P, Johnson D, et al, 2001. Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak [J]. Global Change Biology, 5(7): 781-789.
    [71] Hungate B A, Johnson D W, Dijkstra P, et al, 2006. Nitrogen cycling during seven years of atmospheric CO2 enrichment in a scrub oak woodland [J]. Ecology, 87(1): 26-40.
    [72] Hymus G, Pontailler J-Y, Li J, et al, 2002. Seasonal variability in the effect of elevated CO2 on ecosystem leaf area index in a scrub-oak ecosystem [J]. Global Change Biology, 8(10): 931-940.
    [73] IPCC, 2021. Climate change 2021: the physical science basis: contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press.
    [74] Iversen C M, 2010. Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems [J]. New Phytologist, 186(2): 346-357.
    [75] Jahnke S, 2001. Atmospheric CO2 concentration does not directly affect leaf respiration in bean or poplar [J]. Plant, Cell & Environment, 24(11): 1139-1151.
    [76] Janssens I A, Duroux M, Taylor G, et al, 1998. Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in Scots pine seedlings [J]. Global Change Biology, 4(8): 871-878.
    [77] Jiang M, Caldararu S, Zhang H, et al, 2020a. Low phosphorus supply constrains plant responses to elevated CO2: a meta-analysis [J]. Global Change Biology, 26(10): 5856-5873.
    [78] Jiang M, Kelly J W G, Atwell B J, et al, 2021. Drought by CO2 interactions in trees: a test of the water savings mechanism [J]. New Phytologist, 230(4): 1421-1434.
    [79] Jiang M, Medlyn B E, Drake J E, et al, 2020b. The fate of carbon in a mature forest under carbon dioxide enrichment [J]. Nature, 580(7802): 227- 231.
    [80] Johnson D W, Ball J T, Walker R F, 1997. Effects of CO2 and nitrogen fertilizaton on vegetation and soil nutrient content in juvenile ponderosa pine [J]. Plant and Soil, 190(1): 29-40.
    [81] Johnson M G, Phillips D L, Tingey D T, et al, 2011. Effects of elevated CO2, N-fertilization, and season on survival of ponderosa pine fine roots [J]. Canadian Journal of Forest Research, 30(2): 220-228.
    [82] Keenan T F, Hollinger D Y, Bohrer G, et al, 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise [J]. Nature, 499(7458): 324–327.
    [83] Keenan T F, Prentice I C, Canadell J G, et al, 2016. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake [J]. Nature Communications, 7(1): 13428.
    [84] Kelly J W G, Duursma R A, Atwell B J, et al, 2016. Drought × CO2 interactions in trees: a test of the low-intercellular CO2 concentration (Ci) mechanism [J]. New Phytologist, 209(4): 1600-1612.
    [85] Kimball B A, Idso S B, Johnson S, et al, 2007. Seventeen years of carbon dioxide enrichment of sour orange trees: final results [J]. Global Change Biology, 13(10): 2171-2183.
    [86] Kirschbaum M U F, 2010. Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies [J]. Plant Physiology, 155(1): 117-124.
    [87] Kitao M, Koike T, Tobita H, et al, 2005. Elevated CO2 and limited nitrogen nutrition can restrict excitation energy dissipation in photosystem II of Japanese white birch (Betula platyphylla var. japonica) leaves [J]. Physiologia Plantarum, 125(1): 64-73.
    [88] Klein T, Bader M K-F, Leuzinger S, et al, 2016. Growth and carbon relations of mature Picea abies trees under five years of free air CO2 enrichment [J]. Journal of Ecology, 104(6): 1720-1733.
    [89] Klein T, Ramon U, 2019. Stomatal sensitivity to CO2 diverges between angiosperm and gymnosperm tree species [J]. Functional Ecology, 33(8): 1411-1424.
    [90] Körner C, 2003a. Carbon limitation in trees [J]. Journal of Ecology, 91(1): 4-17.
    [91] Körner C, 2003b. Nutrients and sink activity drive plant CO2 responses - caution with literature-based analysis [J]. New Phytologist, 159(3): 537-538.
    [92] Kubiske M E, Pregitzer K S, Mikan C J, et al, 1997. Populus tremuloides photosynthesis and crown architecture in response to elevated CO2 an soil N availability [J]. Oecologia, 110(3): 328–336.
    [93] Lamba S, Hall M, Räntfors M, et al, 2017. Physiological acclimation dampens initial effects of elevated temperature and atmospheric CO2 concentration in mature boreal Norway spruce [J]. Plant, Cell & Environment, 41(2): 300-313.
    [94] Langley J A, McKinley D C, Wolf A A, et al, 2009. Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO2 [J]. Soil Biology and Biochemistry, 41(1): 54-60.
    [95] Larsen K S, Andresen L C, Beier C, et al, 2011. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: synthesizing results of the CLIMAITE project after two years of treatments [J]. Global Change Biology, 17(5): 1884-1899.
    [96] Lauriks F, Salomon R L, Steppe K, 2021. Temporal variability in tree responses to elevated atmospheric CO2 [J]. Plant, Cell & Environment, 44(5): 1292-1310.
    [97] Leuzinger S, Haettenschwiler S, 2013. Beyond global change: lessons from 25 years of CO2 research [J]. Oecologia, 171(3): 639-651.
    [98] Leuzinger S, Körner C, 2007. Water savings in mature deciduous forest trees under elevated CO2 [J]. Global Change Biology, 13(12): 2498-2508.
    [99] Li L, Wang X, Manning W J, 2019. Effects of elevated CO2 on leaf senescence, leaf nitrogen resorption, and late-season photosynthesis in Tilia americana L. [J]. Frontiers in Plant Science, 10: 1217.
    [100] Li W, Hartmann H, Adams H D, et al, 2018. The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species [J]. Tree Physiology, 38(11): 1706-1723.
    [101] Liang J, Qi X, Souza L, 2016. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis [J]. Biogeosciences, 13(9): 2689-2699.
    [102] Liberloo M, Calfapietra C, Lukac M, et al, 2006. Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world [J]. Global Change Biology, 12(6): 1094-1106.
    [103] Liberloo M, Tulva I, Raïm O, et al, 2007. Photosynthetic stimulation under long-term CO2 enrichment and fertilization is sustained across a closed Populus canopy profile (EUROFACE) [J]. New Phytologist, 173(3): 537-549.
    [104] Lindahl B D, Tunlid A, 2014. Ectomycorrhizal fungi-potential organic matter decomposers, yet not saprotrophs [J]. New Phytologist, 205(4): 1443-1447.
    [105] Lodge R J, Dijkstra P, Drake B G, et al, 2001. Stomatal acclimation to increased CO2 in a Florida scrub oak species Quercus myrtifolia Willd [J]. Plant, Cell & Environment, 24(1): 77-88.
    [106] Long S P, 1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? [J]. Plant, Cell & Environment, 14(8): 729-739.
    [107] Long S P, Ainsworth E A, Rogers A, et al, 2004. Rising atmospheric carbon dioxide: plants FACE the future [J]. Annual Review of Plant Biology, 55(1): 591-628.
    [108] Luo Y Q, Su B, Currie W S, et al, 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide [J]. Bioscience, 54(8): 731-739.
    [109] Luomala E-M, Laitinen K, Kellomäki S, et al, 2003. Variable photosynthetic acclimation in consecutive cohorts of Scots pine needles during 3 years of growth at elevated CO2 and elevated temperature [J]. Plant, Cell & Environment, 26(5): 645-660.
    [110] Martínez-Vilalta J, Sala A, Asensio D, et al, 2016. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis [J]. Ecological Monographs, 86(4): 495-516.
    [111] McCarthy H R, Oren R, Finzi A C, et al, 2007. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2 [J]. Global Change Biology, 13(12): 2479-2497.
    [112] McCarthy H R, Oren R, Johnsen K H, et al, 2010. Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric CO2 with nitrogen and water availability over stand development [J]. New Phytologist, 185(2): 514-528.
    [113] McCormack M L, Adams T S, Smithwick E A H, et al, 2012. Predicting fine root lifespan from plant functional traits in temperate trees [J]. New Phytologist, 195(4): 823-831.
    [114] McDonald E P, Erickson J E, Kruger E L, 2002. Can decreased transpiration limit plant nitrogen acquisition in elevated CO2? [J]. Functional Plant Biology, 29(9): 1115-1120.
    [115] McDowell N G, Sevanto S, 2010. The mechanisms of carbon starvation: how, when, or does it even occur at all? [J]. New Phytologist, 186(2): 264-266.
    [116] McKinley D C, Romero J C, Hungate B A, et al, 2009. Does deep soil N availability sustain long-term ecosystem responses to elevated CO2? [J]. Global Change Biology, 15(8): 2035-2048.
    [117] McMurtrie R E, Norby R J, Medlyn B E, et al, 2008. Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis [J]. Functional Plant Biology, 35(6): 521-534.
    [118] Medlyn B E, Badeck F-W, Pury D G G, et al, 1999. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters [J]. Plant, Cell & Environment, 22(12): 1475-1495.
    [119] Medlyn B E, Barton C V M, Broadmeadow M S J, et al, 2001. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis [J]. New Phytologist, 149(2): 247-264.
    [120] Mildner M, Bader M K-F, Baumann C, et al, 2015. Respiratory fluxes and fine root responses in mature Picea abies trees exposed to elevated atmospheric CO2 concentrations [J]. Biogeochemistry, 124(1-3): 95-111.
    [121] Moore B D, Cheng S H, Sims D, et al, 1999. The biochemical and molecular basis for acclimation to elevated CO2 [J]. Plant, Cell & Environment, 22(6): 567-582.
    [122] Noh N J, Crous K Y, Salomon R L, et al, 2021. Elevated CO2 alters the temperature sensitivity of stem CO2 efflux in a mature eucalypt woodland [J]. Environmental and Experimental Botany, 188:104508.
    [123] Norby R J, Cotrufo M F, Ineson P, et al, 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis [J]. Oecologia, 127(2): 153-165.
    [124] Norby R J, Hartz-Rubin J S, Verbrugge M J, 2003a. Phenological responses in maple to experimental atmospheric warming and CO2 enrichment [J]. Global Change Biology, 9(12): 1792-1801.
    [125] Norby R J, Long T M, Hartz-Rubin J S, et al, 2000. Nitrogen resorption in senescing tree leaves in a warmer, CO2-enriched atmosephere [J]. Plant and Soil, 224(1): 15-29.
    [126] Norby R J, Sholtis J D, Gunderson C A, et al, 2003b. Leaf dynamics of a deciduous forest canopy: no response to elevated CO2 [J]. Oecologia, 136(4): 574-584.
    [127] Norby R J, Warren J M, Iversen C M, et al, 2010. CO2 enhancement of forest productivity constrained by limited nitrogen availability [J]. Proceedings of the National Academy of Sciences of the United States of America, 107(45): 19368-19373.
    [128] Norby R J, Zak D R, 2011. Ecological lessons from Free-Air CO2 enrichment (FACE) experiments[J]. Annual Review of Ecology, Evolution, and Systematics, 42(1): 181-203.
    [129] Osborne C P, Drake B, Laroche J, et al, 1997. Does long-term elevation of CO2 concentration increase photosynthesis in forest floor vegetation? [J]. Plant Physiology, 114(1): 337-344.
    [130] Pathare V S, Crous K Y, Cooke J, et al, 2017. Water availability affects seasonal CO2-induced photosynthetic enhancement in herbaceous species in a periodically dry woodland [J]. Global Change Biology, 23(12): 5164-5178.
    [131] Peñuelas J, Poulter B, Sardans J, et al, 2013. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe [J]. Nature Communications, 4(1): 2934.
    [132] Phillips R, Whalen S, Schlesinger W, 2001. Influence of atmospheric CO2 enrichment on nitrous oxide flux in a temperate forest [J]. Global Biogeochemical Cycles, 15(3): 741-752.
    [133] Phillips R P, Brzostek E, Midgley M G, 2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests [J]. New Phytologist, 199(1): 41-51.
    [134] Piao S, Liu Q, Chen A, et al, 2019. Plant phenology and global climate change: current progresses and challenges [J]. Global Change Biology, 25(6): 1922-1940.
    [135] Poorter H, Navas M-L, 2003. Plant growth and competition at elevated CO2: on winners, losers and functional groups [J]. New Phytologist, 157(2): 175-198.
    [136] Poorter H, van Berkel Y, Baxter B, et al, 1997. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species [J]. Plant, Cell & Environment, 20(4): 472–482.
    [137] Pritchard S G, Peterson C M, Prior S A, et al, 1997. Elevated atmospheric CO2 differentially affects needle chloroplast ultrastructure and phloem anatomy in Pinus palustris: interactions with soil resource availability [J]. Plant, Cell & Environment, 20(4): 461-471.
    [138] Quentin A G, Crous K Y, Barton C V M, et al, 2015. Photosynthetic enhancement by elevated CO2 depends on seasonal temperatures for warmed and non-warmed Eucalyptus globulus trees [J]. Tree Physiology, 35(11): 1249-1263.
    [139] Reich P B, 2014. The world-wide 'fast-slow' plant economics spectrum: a traits manifesto [J]. Journal of Ecology, 102(2): 275-301.
    [140] Reich P B, Sendall K M, Stefanski A, et al, 2018. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture [J]. Nature, 562(7726): 263-267.
    [141] Rodriguez-Calcerrada J, Martin-StPaul N K, Lempereur M, et al, 2014. Stem CO2 efflux and its contribution to ecosystem CO2 efflux decrease with drought in a Mediterranean forest stand [J]. Agricultural and Forest Meteorology, 195: 61-72.
    [142] Rogers A, Ellsworth D, 2002. Photosynthetic acclimation of Pinus taeda (loblolly pine) to long-term growth in elevated pCO2 (FACE) [J]. Plant, Cell & Environment, 25(7): 851-858.
    [143] Ryan M G, 1991. Effects of climate change on plant respiration [J]. Ecological Applications, 1(2): 157-167.
    [144] Ryan M G, Gower S T, Hubbard R M, et al, 1995. Woody tissue maintenance respiration of four conifers in contrasting climate [J]. Oecologia, 101(2): 133-140.
    [145] Ryan M G, Hubbard R M, Pongracic S, et al, 1996. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status [J]. Tree Physiology, 16(3): 333-343.
    [146] Ryan M G, Phillips N, Bond B J, 2006. The hydraulic limitation hypothesis revisited [J]. Plant, Cell & Environment, 29(3): 367-381.
    [147] Sage R F, 1994. Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective [J]. Photosynthesis research, 39(3): 351-368.
    [148] Salomón R L, Steppe K, Crous K Y, et al, 2019. Elevated CO2 does not affect stem CO2 efflux nor stem respiration in dry Eucalyptus woodland, but it shifts the vertical gradient in xylem [CO2] [J]. Plant, Cell & Environment, 42(7): 2151-2164.
    [149] Šantrůček J, Sage R, 1996. Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album [J]. Functional Plant Biology, 23(4): 467-478.
    [150] Saxe H, Ellsworth D, Heath J, 1998. Tree and forest functioning in an enriched CO2 atmosphere [J]. New Phytologist, 139(3): 395-436.
    [151] Sholtis J D, Gunderson C A, Norby R J, et al, 2004. Persistent stimulation of photosynthesis by elevated CO2 in a sweetgum (Liquidambar styraciflua) forest stand [J]. New Phytologist, 162(2): 343-354.
    [152] Smith A R, Lukac M, Hood R, et al, 2013. Elevated CO2 enrichment induces a differential biomass response in a mixed species temperate forest plantation [J]. New Phytologist, 198(1): 156-168.
    [153] Smith N G, Keenan T F, 2020. Mechanisms underlying leaf photosynthetic acclimation to warming and elevated CO2 as inferred from least-cost optimality theory [J]. Global Change Biology, 26(9): 5202-5216.
    [154] Sulman B N, Brzostek E R, Medici C, et al, 2017. Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association [J]. Ecology Letters, 20(8): 1043-1053.
    [155] Talhelm A F, Pregitzer K S, Kubiske M E, et al, 2014. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests [J]. Global Change Biology, 20(8): 2492-2504.
    [156] Taylor G, Tallis M J, Giardina C P, et al, 2008. Future atmospheric CO2 leads to delayed autumnal senescence [J]. Global Change Biology, 14(2): 264-275.
    [157] Terrer C, Jackson R B, Prentice I C, et al, 2019. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass [J]. Nature Climate Change, 9(9): 684-689.
    [158] Terrer C, Vicca S, Hungate B A, et al, 2016. Mycorrhizal association as a primary control of the CO2 fertilization effect [J]. Science, 353(6294): 72-74.
    [159] Terrer C, Vicca S, Stocker B D, et al, 2018. Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition [J]. New Phytologist, 217(2): 507-522.
    [160] Tissue D T, Griffin K L, Turnbull M H, et al, 2001. Canopy position and needle age affect photosynthetic response in field-grown Pinus radiata after five years of exposure to elevated CO2 partial pressure [J]. Tree Physiology, 21(12/13): 915-923.
    [161] Tissue D T, Thomas R B, Strain B R, 1997. Atmospheric CO2 enrichment increases growth and photosynthesis of Pinus taeda [J]. Plant, Cell & Environment, 20(9): 1123-1134.
    [162] Tjoelker M G, Oleksyn J, Reich P B, 1998. Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated CO2 and temperature [J]. Tree Physiology, 18(11): 715-726.
    [163] Tjoelker M G, Reich P B, Oleksyn J, 1999. Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal species [J]. Plant, Cell & Environment, 22(7): 767-778.
    [164] Tricker P, Calfapietra C, Kuzminsky E, et al, 2004. Long-term acclimation of leaf production, development, longevity and quality following 3 yr exposure to free-air CO2 enrichment during canopy closure in Populus [J]. New Phytologist, 162(2): 413-426.
    [165] Uddling J, Teclaw R M, Kubiske M E, et al, 2008. Sap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone [J]. Tree Physiology, 28(8): 1231-1243.
    [166] Uddling J, Teclaw R M, Pregitzer K S, et al, 2009. Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone [J]. Tree Physiology, 29(11): 1367-1380.
    [167] Walker A P, De Kauwe M G, Bastos A, et al, 2021. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2 [J]. New Phytologist, 229(5): 2413-2445.
    [168] Walker A P, De Kauwe M G, Medlyn B E, et al, 2019. Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment [J]. Nature Communications, 10(1): 454.
    [169] Walker A P, Zaehle S, Medlyn B E, et al, 2015. Predicting long-term carbon sequestration in response to CO2 enrichment: how and why do current ecosystem models differ? [J]. Global Biogeochemical Cycles, 29(4): 476 – 495.
    [170] Wang D, Heckathorn S A, Wang X, et al, 2012. A meta-analysis of plant physiological and growth responses to temperature and elevated CO2 [J]. Oecologia, 169(1): 1-13.
    [171] Wang Z, Wang C, 2021a. Magnitude and mechanisms of nitrogen-mediated responses of tree biomass production to elevated CO2: a global synthesis [J]. Journal of Ecology, 109(12): 4038-4055.
    [172] Wang Z, Wang C, 2021b. Responses of tree leaf gas exchange to elevated CO2 combined with changes in temperature and water availability: a global synthesis [J]. Global Ecology and Biogeography, 30(12): 2500-2512.
    [173] Warren J M, Jensen A M, Medlyn B E, et al, 2015. Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment [J]. AoB Plants, 7: plu074.
    [174] Watanabe Y, Satomura T, Sasa K, et al, 2010. Differential anatomical responses to elevated CO2 in saplings of four hardwood species [J]. Plant, Cell & Environment, 33(7): 1101-1111.
    [175] Way D A, Oren R, Kroner Y, 2015. The space-time continuum: the effects of elevated CO2 and temperature on trees and the importance of scaling [J]. Plant, Cell & Environment, 38(6): 991–1007.
    [176] Weemstra M, Kiorapostolou N, van Ruijven J, et al, 2020. The role of fine-root mass, specific root length and life span in tree performance: a whole-tree exploration [J]. Functional Ecology, 34(3): 575-585.
    [177] Weemstra M, Mommer L, Visser E J W, et al, 2016. Towards a multidimensional root trait framework: a tree root review [J]. New Phytologist, 211(4): 1159-1169.
    [178] Wertin T M, McGuire M A, Teskey R O, 2010. The influence of elevated temperature, elevated atmospheric CO2 concentration and water stress on net photosynthesis of loblolly pine (Pinus taeda L.) at northern, central and southern sites in its native range [J]. Global Change Biology, 16(7): 2089-2103.
    [179] White A C, Rogers A, Rees M, et al, 2016. How can we make plants grow faster? A source-sink perspective on growth rate [J]. Journal of Experimental Botany, 67(1): 31-45.
    [180] Wielgolaski F E, 2001. Phenological modifications in plants by various edaphic factors [J]. International Journal of Biometeorology, 45(4): 196-202.
    [181] Wujeska-Klause A, Crous K Y, Ghannoum O, et al, 2019. Lower photorespiration in elevated CO2 reduces leaf N concentrations in mature Eucalyptus trees in the field [J]. Global Change Biology, 25(4): 1282-1295.
    [182] Wullschleger S, Norby R, Hanson P, 1995. Growth and maintenance respiration in stems of Quercus alba after 4 years of CO2 enrichment [J]. Physiologia Plantarum, 93(1): 47-54.
    [183] Wullschleger S D, Norby R J, 1992. Respiratory cost of leaf growth and maintenance in white oak saplings exposed to atmospheric CO2 enrichment [J]. Canadian Journal of Forest Research, 22(11): 1717-1721.
    [184] Wullschleger S D, Tschaplinski T J, Norby R J, 2002. Plant water relations at elevated CO2-implications for water-limited environments [J]. Plant, Cell & Environment, 25(2): 319-331.
    [185] Yang J, Medlyn B E, De Kauwe M G, et al, 2020. Low sensitivity of gross primary production to elevated CO2 in a mature eucalypt woodland [J]. Biogeosciences, 17(2): 265-279.
    [186] Zak D R, Pregitzer K S, Kubiske M E, et al, 2011. Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2 [J]. Ecology Letters, 14(12): 1220-1226.
    [187] Zani D, Crowther T W, Mo L, et al, 2020. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees [J]. Science, 370(6520): 1066-1071.
    [188] Zha T S, Kellomäki S, Wang K Y, et al, 2005. Respiratory responses of Scots pine stems to 5 years of exposure to elevated CO2 concentration and temperature [J]. Tree Physiology, 25(1): 49-56.
    [189] Zhou Y M, Wang C G, Han S J, et al, 2011. Species-specific and needle age-related responses of photosynthesis in two Pinus species to long-term exposure to elevated CO2 concentration [J]. Trees, 25(2): 163-173.
    [190] Zhu Z, Piao S, Myneni R B, et al, 2016. Greening of the earth and its drivers [J]. Nature Climate Change, 6(8): 791–795.
  • 加载中
计量
  • 文章访问数:  829
  • HTML全文浏览量:  405
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 录用日期:  2021-12-01
  • 网络出版日期:  2022-01-17
  • 刊出日期:  2022-01-17

目录

    /

    返回文章
    返回

    关于网站迁移的通知

     尊敬的各位专家、读者:

    本刊网站将于6月28日起迁移至中国林业科学研究院期刊网(https://journals.caf.ac.cn/ldstxtybhxb/),届时旧网址http://www.ldstxtybhxb.com/将停止访问,如需投稿请直接登录http://edit.caf.ac.cn/ldstxtybhxb。由此给您带来不便,敬请谅解!

    如有任何问题,请及时联系编辑部,Tel:010-62889503;E-mail:ldstxtybh@caf.ac.cn。

     

    陆地生态系统与保护学报

    2024-06-25