留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极端气候影响华中和东南地区森林生态系统结构与功能的研究进展

黄长江 何杨辉 周灵燕 刘瑞强 王国锋 周旭辉

黄长江, 何杨辉, 周灵燕, 刘瑞强, 王国锋, 周旭辉. 极端气候影响华中和东南地区森林生态系统结构与功能的研究进展[J]. 陆地生态系统与保护学报, 2022, 2(5): 71-83. doi: 10.12356/j.2096-8884.2022-0061
引用本文: 黄长江, 何杨辉, 周灵燕, 刘瑞强, 王国锋, 周旭辉. 极端气候影响华中和东南地区森林生态系统结构与功能的研究进展[J]. 陆地生态系统与保护学报, 2022, 2(5): 71-83. doi: 10.12356/j.2096-8884.2022-0061
Changjiang Huang, Yanghui He, Lingyan Zhou, Ruiqiang Liu, Guofeng Wang, Xuhui Zhou. Effects of Extreme Climate on the Structure and Function of Forest Ecosystem in Central and Southeast China[J]. Terrestrial Ecosystem and Conservation, 2022, 2(5): 71-83. doi: 10.12356/j.2096-8884.2022-0061
Citation: Changjiang Huang, Yanghui He, Lingyan Zhou, Ruiqiang Liu, Guofeng Wang, Xuhui Zhou. Effects of Extreme Climate on the Structure and Function of Forest Ecosystem in Central and Southeast China[J]. Terrestrial Ecosystem and Conservation, 2022, 2(5): 71-83. doi: 10.12356/j.2096-8884.2022-0061

极端气候影响华中和东南地区森林生态系统结构与功能的研究进展

doi: 10.12356/j.2096-8884.2022-0061
基金项目: 中国科学院野外站联盟项目(KFJ-SW-YW034)
详细信息
    作者简介:

    黄长江:E-mail: cj_huang124@163.com

    通讯作者:

    E-mail: yanghui15@hotmail.com

  • 中图分类号: S718.5

Effects of Extreme Climate on the Structure and Function of Forest Ecosystem in Central and Southeast China

  • 摘要: 受气候变化影响,华中、东南地区极端气候事件出现频率及强度均显著增加,对区域森林生态系统结构、功能和稳定性产生了严重影响。全面和准确地评估极端气候对森林生态系统的影响,可为区域森林生态保护与经济协调发展提供数据基础与决策依据。以热浪、极端干旱、台风/极端降雨、冰冻雨雪为例,系统总结了极端气候对华中、东南地区森林生态系统结构与功能的影响。极端气候事件的发生一方面通过增加植物的死亡率,抑制树木光合作用,进而影响植被净初级生产力与生态系统碳吸收;另一方面通过增加凋落物数量和林隙面积,影响森林生态系统的生物多样性和稳定性,深刻改变森林生物地球化学循环过程。此外,森林生态系统受干扰程度受极端气候事件频率及强度的影响,且在不同研究手段和方法的结果之间存在显著差异,这为准确评估与预测极端气候对森林生态系统的影响带来极大的不确定性。
  • 图  1  极端气候事件影响森林生态系统过程

    Figure  1.  Process diagram of extreme climate events affecting forest ecosystem

    图  2  极端气候对华中、东南森林生态系统的影响

    Figure  2.  Effects of extreme climate on forest ecosystems in central and southeastern China

  • [1] 艾雅雯, 孙建奇, 韩双泽, 等, 2020. 1961~2016年中国春季极端低温事件的时空特征分析[J]. 大气科学, 44(6): 1305-1319. doi:  10.3878/j.issn.1006-9895.1912.19223
    [2] 白兴月, 程瑚瑞, 1993. 松材线虫萎蔫病在我国南方林区的流行能力[J]. 植物检疫, (4): 333-334. doi:  10.19662/j.cnki.issn1005-2755.1993.04.041
    [3] 蔡章林, 吴仲民, 2020. 极端天气事件对森林生态系统的影响[J]. 热带林业, 48(1): 44-49+43. doi:  10.3969/j.issn.1672-0938.2020.01.012
    [4] 曹晴, 郝振纯, 傅晓洁, 等, 2020. 1960—2017年中国极端气候要素时空变化分析[J]. 人民黄河, 42(2): 11-17. doi:  10.3969/j.issn.1000-1379.2020.02.003
    [5] 曹昀, 张聃, 卢永聪, 2008. 南方雨雪冰冻灾后林业生态恢复的措施[J]. 福建林业科技, 35(4): 207-209. doi:  10.13428/j.cnki.fjlk.2008.04.050
    [6] 陈步峰, 周光益, 曾庆波, 等, 1997. 热带山地雨林生态系统的水分生态效应-冠层对暴雨势能的消减、暴雨养分贮存[J]. 生态学报, (6): 73-77.
    [7] 陈晨, 贾畅, 王晶苑, 等, 2020. 不同生长时期极端降水事件对人工针叶林净生产力的影响: 以江西省吉安市千烟洲生态试验站为例[J]. 水土保持通报, 40(2): 317-324. doi:  10.13961/j.cnki.stbctb.2020.02.045
    [8] 陈星霖, 2018. 林业碳汇经济价值评估及影响因素研究: 以福建省为例[D]. 福州: 福建农林大学.
    [9] 陈阳, 2022. 极端干旱对亚热带森林优势树种碳水过程的影响及机制[D]. 上海: 华东师范大学.
    [10] 董雄德, 刘恺, 李若雨, 等, 2019. 不同土地利用方式下土壤呼吸对极端降水脉冲的响应[J]. 东北林业大学学报, 47(12): 67-72. doi:  10.13759/j.cnki.dlxb.2019.12.012
    [11] 葛晓改, 周本智, 王刚, 等, 2014. 雪灾干扰下林窗对木荷幼苗更新的影响[J]. 林业科学研究, 27(4): 529-535. doi:  10.13275/j.cnki.lykxyj.2014.04.014
    [12] 管玥, 何奇瑾, 刘佳鸿, 等, 2021. 黄淮海地区1961-2015年极端气温及其初终日序的变化特征[J]. 水土保持研究, 144(1): 147-152+142. doi:  10.13869/j.cnki.rswc.2021.01.019
    [13] 郝光华, 2014. 泾县雨雪冰冻灾害森林资源损失调查评估[J]. 安徽农学通报, 20(10): 106-107. doi:  10.16377/j.cnki.issn1007-7731.2014.10.002
    [14] 洪奕丰, 王小明, 周本智, 等, 2012. 闽东沿海防护林台风灾害的影响因子[J]. 生态学杂志, 31(4): 781-786. doi:  10.13292/j.1000-4890.2012.0114
    [15] 江晓菲, 江志红, 李伟, 2020. 全球增温1.5和2 ℃下中国东部极端高温风险预估[J]. 大气科学学报, 43(6): 1056-1064. doi:  10.13878/j.cnki.dqkxxb.20201011001
    [16] 李敏, 姚顽强, 任小丽, 等, 2019. 1981—2015年神农架林区森林生态系统净初级生产力估算[J]. 环境科学研究, 32(5): 749-757. doi:  10.13198/j.issn.1001-6929.2018.11.14
    [17] 刘斌, 潘澜, 薛立, 2012. 台风对森林的影响[J]. 生态学报, 32(5): 1596-1605. doi:  10.5846/stxb201012231832
    [18] 刘建灵, 孙莉莉, 戚连忠, 等, 2009. 雨雪冰冻灾害对云和县主要森林群落的影响[J]. 浙江林业科技, 29(3): 48-51. doi:  10.3969/j.issn.1001-3776.2009.03.011
    [19] 刘胜, 丁九敏, 徐涵湄, 等, 2010. 雪灾对毛竹林土壤呼吸与微生物生物量碳的影响[J]. 南京林业大学学报(自然科学版), 34(3): 126-130. doi:  10.3969/j.issn.1000-2006.2010.03.026
    [20] 刘武, 2013. 雨雪冰冻干扰对江西大岗山常绿阔叶林影响研究[D]. 南昌: 江西农业大学.
    [21] 刘玄, 唐培军, 吴同帅, 等, 2022. 山东省极端气候指数变化特征研究[J]. 水利水运工程学报, 192(2): 40-50. doi:  10.12170/20210722001
    [22] 鲁春燕, 2021. 极端干旱对亚热带森林树木生长的影响[D]. 上海: 华东师范大学.
    [23] 牛宝清, 2022. 油松病虫害主要类型和防治技术研究[J]. 种子科技, 40(14): 88-90. doi:  10.19904/j.cnki.cn14-1160/s.2022.14.029
    [24] 彭舜磊, 王艳红, 由文辉, 等, 2012. 台风暴雨对沿海森林水文过程与养分迁移的影响[J]. 湖北农业科学, 51(19): 4181-4183. doi:  10.14088/j.cnki.issn0439-8114.2012.19.069
    [25] 朴世龙, 张新平, 陈安平, 等, 2019. 极端气候事件对陆地生态系统碳循环的影响[J]. 中国科学:地球科学, 49(9): 1321-1334. doi:  10.1360/N072018-00316
    [26] 盛若成, 李敏, 陈军, 2019. 两株我国南北松材线虫虫株形态指标与致病力比较[J]. 南京林业大学学报(自然科学版), 43(6): 18-24. doi:  10.3969/j.issn.1000-2006.201907023
    [27] 史顺增, 2017. 土壤增温和氮添加对杉木幼苗细根生产和生理生态性质的影响[D]. 福州: 福建师范大学.
    [28] 孙晓瑞, 高永, 杨光, 等, 2017. 森林冰雪灾害致损因子研究综述[J]. 浙江林业科技, 37(3): 79-84. doi:  10.3969/j.issn.1001-3776.2017.03.015
    [29] 仝川, 杨玉盛, 2007. 飓风和台风对沿海地区森林生态系统的影响[J]. 生态学报, (12): 5337-5344. doi:  10.3321/j.issn:1000-0933.2007.12.046
    [30] 王怀军, 曹蕾, 肖明贤, 等, 2021. 淮河流域极端气候事件非平稳特征研究[J]. 中国农村水利水电, 462(4): 1-9. doi:  10.3969/j.issn.1007-2284.2021.04.001
    [31] 王磊, 桑昌鹏, 余再鹏, 等, 2019. 滨海人工林土壤呼吸各组分对台风强降雨的响应[J]. 亚热带资源与环境学报, 14(1): 38-46. doi:  10.19687/j.cnki.1673-7105.2019.01.006
    [32] 王旋, 曹帮华, 毛培利, 等, 2017. 雪灾对鲁南地区侧柏林的影响[J]. 生态学杂志, 36(6): 1509-1514. doi:  10.13292/j.1000-4890.201706.008
    [33] 王云泉, 2015. 雪灾对密度制约维持森林群落生物多样性的影响[D]. 金华: 浙江师范大学.
    [34] 王樟华, 王希华, 沈国春, 2014. 台风干扰对天童常绿阔叶林凋落物量的影响[J]. 华东师范大学学报(自然科学版), (1): 79-89. doi:  10.3969/j.issn.1000-5641.2014.01.010
    [35] 温从辉, 2012. 毛竹响应台风干扰一般特征研究[J]. 安徽农业科学, 40(24): 12113-12115. doi:  10.13989/j.cnki.0517-6611.2012.24.131
    [36] 吴玉成, 2012. 我国重特大干旱灾害频发原因探析[J]. 中国防汛抗旱, 106(5): 10-11+29. doi:  10.16867/j.cnki.cfdm.2012.05.005
    [37] 邬金, 温国胜, 王电杰, 等, 2013. 低温胁迫下7种木麻黄变异类型抗寒性的比较[J]. 福建林学院学报, 33(1): 34-37. doi:  10.13324/j.cnki.jfcf.2013.01.016
    [38] 徐涵湄, 阮宏华, 2013. 雪灾对武夷山毛竹林凋落物分解和养分释放的影响[J]. 南京林业大学学报(自然科学版), 37(6): 69-72.
    [39] 许改平, 刘芳, 吴兴波, 等, 2014. 低温胁迫下毛竹叶片色素质量分数与反射光谱的相关性[J]. 浙江农林大学学报, 31(1): 28-36. doi:  10.11833/j.issn.2095-0756.2014.01.005
    [40] 杨佳骏, 吴永波, 张燕红, 2020. 高温与干旱胁迫对‘南林895杨’扦插苗生长和超微结构的影响[J]. 林业科学, 56(5): 176-183. doi:  10.11707/j.1001-7488.20200520
    [41] 杨续超, 陈葆德, 胡可嘉, 2015. 城市化对极端高温事件影响研究进展[J]. 地理科学进展, 34(10): 1219-1228.
    [42] 叶建仁, 2000. 中国森林病虫害防治现状与展望[J]. 南京林业大学学报, (6): 1-5. doi:  10.3969/j.issn.1000-2006.2000.06.001
    [43] 殷洁, 戴尔阜, 吴绍洪, 2013. 中国台风灾害综合风险评估与区划[J]. 地理科学, 33(11): 1370-1376. doi:  10.13249/j.cnki.sgs.2013.11.015
    [44] 余海霞, 曲鲁平, 汤行昊, 等, 2022[2022-12-27]. 闽楠和木荷非结构性碳水化合物对不同模式热浪的差异性响应[J/OL]. 植物生态学报. http://kns.cnki.net/kcms/detail/11.3397.Q.20230224.1302.002.html.
    [45] 昝志曼, 刘彦春, 刘银占, 等, 2020. 极端降雪对北亚热带-暖温带气候过渡带人工林土壤呼吸的影响[J]. 林业科学研究, 33(2): 27-34. doi:  10.13275/j.cnki.lykxyj.2020.02.004
    [46] 张德明, 2019. 江淮丘陵地区几种常绿树种防范雪灾措施[J]. 安徽林业科技, 45(5): 39-41. doi:  10.3969/j.issn.2095-0152.2019.05.013
    [47] 张弥, 温学发, 张雷明, 等, 2018. 极端高温对亚热带人工针叶林净碳吸收影响的多时间尺度分析[J]. 应用生态学报, 29(2): 421-432. doi:  10.13287/j.1001-9332.201802.015
    [48] 张学珍, 郑景云, 郝志新, 2020. 中国主要经济区的近期气候变化特征评估[J]. 地理科学进展, 39(10): 1609-1618. doi:  10.18306/dlkxjz.2020.10.001
    [49] 张宇鹏, 周国模, 周宇峰, 等, 2017. 5个常见绿化树种对极端高温的光合响应特征[J]. 浙江农林大学学报, 34(2): 301-309. doi:  10.11833/j.issn.2095-0756.2017.02.014
    [50] 赵林, 徐春雪, 刘雪莹, 等, 2014. 干旱对湖北省森林植被净初级生产力的影响[J]. 长江流域资源与环境, 23(11): 1595-1602. doi:  10.11870/cjlyzyyhj201411016
    [51] 郑志颖, 2019. “莫兰蒂”强台风对闽南沿海马尾松林下植物多样性的影响[J]. 防护林科技, 184(1): 3-6+91. doi:  10.13601/j.issn.1005-5215.2019.01.002
    [52] 周光益, 陈步峰, 曾庆波, 等, 1996. 台风和强热带风暴对尖峰岭热带山地雨林生态系统的水文影响研究[J]. 生态学报, (5): 555-558.
    [53] 周贵尧, 周灵燕, 邵钧炯, 等, 2020. 极端干旱对陆地生态系统的影响: 进展与展望[J]. 植物生态学报, 44(5): 515-525. doi:  10.17521/cjpe.2019.0317
    [54] 左志燕, 李明倩, 安宁, 等, 2022. 中国冬季大范围极端冷、暖日的变化与成因[J]. 中国科学: 地球科学, 52(2): 238-252.
    [55] Ainsworth E A, Rogers A, 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions[J]. Plant, Cell and Environment, 30(3): 258-270. doi:  10.1111/j.1365-3040.2007.01641.x
    [56] Allen C D, Macalady A K, Chenchouni H, et al, 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 259(4): 660-684. doi:  10.1016/j.foreco.2009.09.001
    [57] Anderegg W R L, Hicke J A, Fisher R A, et al, 2015. Tree mortality from drought, insects, and their interactions in a changing climate[J]. New Phytologist, 208(3): 674-683. doi:  10.1111/nph.13477
    [58] Arnone III J A, Verburg P S J, Johnson D W, et al, 2008. Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year[J]. Nature, 455(7211): 383-386. doi:  10.1038/nature07296
    [59] Barr J G, Engel V, Smith T J, et al, 2012. Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades[J]. Agricultural and Forest Meteorology, 153: 54-66. doi:  10.1016/j.agrformet.2011.07.022
    [60] Bauweraerts I, Wertin T M, Ameye M, et al, 2013. The effect of heat waves, elevated [CO2] and low soil water availability on northern red oak (Quercus rubra L.) seedlings[J]. Global Change Biology, 19(2): 517-528. doi:  10.1111/gcb.12044
    [61] Borken W, Savage K, Davidson E A, et al, 2006. Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil[J]. Global Change Biology, 12(2): 177-193. doi:  10.1111/j.1365-2486.2005.001058.x
    [62] Brando P M, Balch J K, Nepstad D C, et al, 2014. Abrupt increases in Amazonian tree mortality due to drought–fire interactions[J]. Proceedings of the National Academy of Sciences, 111(17): 6347-6352. doi:  10.1073/pnas.1305499111
    [63] Bréda N, Huc R, Granier A, et al, 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences[J]. Annals of Forest Science, 63(6): 625-644. doi:  10.1051/forest:2006042
    [64] Bu X L, Gu X Y, Zhou X Q, et al, 2018. Extreme drought slightly decreased soil labile organic C and N contents and altered microbial community structure in a subtropical evergreen forest[J]. Forest Ecology and Management, 429: 18-27. doi:  10.1016/j.foreco.2018.06.036
    [65] Cavin L, Mountford E P, Peterken G F, et al, 2013. Extreme drought alters competitive dominance within and between tree species in a mixed forest stand[J]. Functional Ecology, 27(6): 1424-1435. doi:  10.1111/1365-2435.12126
    [66] Chen H, Lu W, Yan G, et al, 2014. Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China[J]. Biogeosciences, 11(19): 5323-5333. doi:  10.5194/bg-11-5323-2014
    [67] Chen W R, Zheng J S, Li Y Q, et al, 2012. Effects of high temperature on photosynthesis, chlorophyll fluorescence, chloroplast ultrastructure, and antioxidant activities in fingered citron[J]. Russian Journal of Plant Physiology, 59(6): 732-740. doi:  10.1134/s1021443712060040
    [68] Chen Z M, Xu Y H, Zhou X H, et al, 2017. Extreme rainfall and snowfall alter responses of soil respiration to nitrogen fertilization: a 3-year field experiment[J]. Global Change Biology, 23(8): 3403-3417. doi:  10.1111/gcb.13620
    [69] Chiang P N, Yu J C, Lai Y J, 2021. Soil respiration variation among four tree species at young afforested sites under the influence of frequent typhoon occurrences[J]. Forests, 12(6): 787. doi:  10.3390/f12060787
    [70] Choat B, Brodribb T J, Brodersen C R, et al, 2018. Triggers of tree mortality under drought[J]. Nature, 558(7711): 531-539. doi:  10.1038/s41586-018-0240-x
    [71] Chu X L, Wang X H, Zhang D B, et al, 2019. Responses of Taxus chinensis and Phoebe chekiangensis seedlings to controlled-release fertilizer in various formulations and application rates[J]. iForest-Biogeosciences and Forestry, 12(3): 254-261. doi:  10.3832/ifor2714-012
    [72] Ciais P, Reichstein M, Viovy N, et al, 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J]. Nature, 437(7058): 529-533. doi:  10.1038/nature03972
    [73] Dai A, 2013. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 3(1): 52-58. doi:  10.1038/nclimate1633
    [74] Ge J L, Xie Z Q, 2017. Geographical and climatic gradients of evergreen versus deciduous broad-leaved tree species in subtropical China: implications for the definition of the mixed forest[J]. Ecology and Evolution, 7(11): 3636-3644. doi:  10.1002/ece3.2967
    [75] Ge X G, Zhou B Z, Tang Y L, 2014. Litter production and nutrient dynamic on a moso bamboo plantation following an extreme disturbance of 2008 ice storm[J]. Advances in Meteorology, 2014: 750865. doi:  10.1155/2014/750865
    [76] Gustafson E J, Sturtevant B R, 2013. Modeling forest mortality caused by drought stress: implications for climate change[J]. Ecosystems, 16(1): 60-74. doi:  10.1007/s10021-012-9596-1
    [77] Guha A, Han J, Cummings C, et al, 2018. Differential ecophysiological responses and resilience to heat wave events in four co-occurring temperate tree species[J]. Environmental Research Letters, 13(6): 065008. doi:  10.1088/1748-9326/aabcd8
    [78] Han Y G, Deng J J, Zhou W M, et al, 2022. Seasonal responses of hydraulic function and carbon dynamics in spruce seedlings to continuous drought[J]. Frontiers in Plant Science, 13: 868108. doi:  10.3389/fpls.2022.868108
    [79] He H S, Shifley S R, Thompson F R, 2011. Overview of contemporary issues of forest research and management in China[J]. Environment Management, 48(6): 1061-1065. doi:  10.1007/s00267-011-9782-5
    [80] Heide O M, 2003. High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming[J]. Tree Physiology, 23(13): 931-936. doi:  10.1093/treephys/23.13.931
    [81] Holm J A, Medvigy D M, Smith B, et al, 2022[2022-09-04]. Exploring the impacts of unprecedented climate extremes on forest ecosystems: hypotheses to guide modeling and experimental studies[J/OL]. Biogeosciences Discussions. https://doi.org/10.5194/bg-2022-65.
    [82] Huang C J, Wu C S, Gong H D, et al, 2020. Decomposition of roots of different diameters in response to different drought periods in a subtropical evergreen broad-leaf forest in Ailao Mountain[J]. Global Ecology and Conservation, 24: e01236. doi:  10.1016/j.gecco.2020.e01236
    [83] Huang L, Yao W, Lu Z, 2015. Interleaved totem-pole bridgeless PFC rectifier with ZVS and low input current ripple[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE). Montreal, QC, Canada: IEEE, 166-171.
    [84] Huang M, Ji J J, Deng F, et al, 2014. Impacts of extreme precipitation on tree plantation carbon cycle[J]. Theoretical and Applied Climatology, 115(3): 655-665. doi:  10.1007/s00704-013-0927-8
    [85] Huang S D, Ye G F, Lin J, et al, 2018. Autotrophic and heterotrophic soil respiration responds asymmetrically to drought in a subtropical forest in the Southeast China[J]. Soil Biology and Biochemistry, 123: 242-249. doi:  10.1016/j.soilbio.2018.04.029
    [86] Ito A, 2010. Evaluation of the impacts of defoliation by tropical cyclones on a Japanese forest's carbon budget using flux data and a process-based model[J]. Journal of Geophysical Research, 115(G4): G04013. doi:  10.1029/2010jg001314
    [87] Jiang Q, Jia L Q, Wang X H, et al, 2022. Soil warming alters fine root lifespan, phenology, and architecture in a Cunninghamia lanceolata plantation[J]. Agricultural and Forest Meteorology, 327: 109201. doi:  10.1016/j.agrformet.2022.109201
    [88] Kitudom N, Fauset S, Zhou Y Y, et al, 2022. Thermal safety margins of plant leaves across biomes under a heatwave[J]. Science of the Total Environment, 806: 150416. doi:  10.1016/j.scitotenv.2021.150416
    [89] Koelemeijer I A, Ehrlén J, Jönsson M, et al, 2022. Interactive effects of drought and edge exposure on old-growth forest understory species[J]. Landscape Ecology, 37(7): 1839-1853. doi:  10.1007/s10980-022-01441-9
    [90] Kuang Y W, Xu Y M, Zhang L L, et al, 2017. Dominant trees in a subtropical forest respond to drought mainly via adjusting tissue soluble sugar and proline content[J]. Frontiers in Plant Science, 8: 802. doi:  10.3389/fpls.2017.00802
    [91] Kurz W A, Dymond C C, Stinson G, et al, 2008. Mountain pine beetle and forest carbon feedback to climate change[J]. Nature, 452(7190): 987-990. doi:  10.1038/nature06777
    [92] Li X J, Xie J S, Zhang Q F, et al, 2020. Substrate availability and soil microbes drive temperature sensitivity of soil organic carbon mineralization to warming along an elevation gradient in subtropical Asia[J]. Geoderma, 364: 114198. doi:  10.1016/j.geoderma.2020.114198
    [93] Li Y Y, Zhou G Y, Liu J X, 2017. Different growth and physiological responses of six subtropical tree species to warming[J]. Frontiers in Plant Science, 8: 1511. doi:  10.3389/fpls.2017.01511
    [94] Liang L F, Yu L F, Wang Z G, 2022. Identifying the dominant impact factors and their contributions to heatwave events over mainland China[J]. Science of the Total Environment, 848: 157527. doi:  10.1016/j.scitotenv.2022.157527
    [95] Lim H, Oren R, Näsholm T, et al, 2019. Boreal forest biomass accumulation is not increased by two decades of soil warming[J]. Nature Climate Change, 9(1): 49-52. doi:  10.1038/s41558-018-0373-9
    [96] Lin S Y, Shaner P J L, Lin T C, 2018. Characteristics of old-growth and secondary forests in relation to age and typhoon disturbance[J]. Ecosystems, 21(8): 1521-1532. doi:  10.1007/s10021-018-0238-0
    [97] Liu B, Liu Q Q, Daryanto S, et al, 2018. Responses of Chinese fir and Schima superba seedlings to light gradients: implications for the restoration of mixed broadleaf-conifer forests from Chinese fir monocultures[J]. Forest Ecology and Management, 419/420: 51-57. doi:  10.1016/j.foreco.2018.03.033
    [98] Liu S, Xu H M, Ding J M, et al, 2016. CO2 emission increases with damage severity in moso bamboo forests following a winter storm in Southern China[J]. Scientific Reports, 6(1): 30351. doi:  10.1038/srep30351
    [99] Liu X F, Chen S D, Yang Z J, et al, 2019. Will heterotrophic soil respiration be more sensitive to warming than autotrophic respiration in subtropical forests? [J]. European Journal of Soil Science, 70(3): 655-663. doi:  10.1111/ejss.12758
    [100] Long S P, Ainsworth E A, Rogers A, et al, 2004. Rising atmospheric carbon dioxide: plants FACE the future[J]. Annual Review of Plant Biology, 55(1): 591-628. doi:  10.1146/annurev.arplant.55.031903.141610
    [101] Lv L X, Zhang Q B, Duan J P, 2013. Increased variability in cold-season temperature since the 1930s in subtropical China[J]. Journal of Climate, 26(13): 4749-4757. doi:  10.1175/jcli-d-12-00332.1
    [102] Malik A A, Swenson T, Weihe C, et al, 2020. Drought and plant litter chemistry alter microbial gene expression and metabolite production[J]. The ISME Journal, 14(9): 2236-2247. doi:  10.1038/s41396-020-0683-6
    [103] McCarthy H R, Oren R, Kim H-S, et al, 2006. Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO2 atmosphere[J]. Journal of Geophysical Research:Atmospheres, 111(D15): D15103. doi:  10.1029/2005JD006428
    [104] Ni Y L, Wang T J, Cao H L, et al, 2021. An old-growth subtropical evergreen broadleaved forest suffered more damage from Typhoon Mangkhut than an adjacent secondary forest[J]. Forest Ecology and Management, 496: 119433. doi:  10.1016/j.foreco.2021.119433
    [105] Nottingham A T, Scott J J, Saltonstall K, et al, 2022. Microbial diversity declines in warmed tropical soil and respiration rise exceed predictions as communities adapt[J]. Nature Microbiology, 7(10): 1650-1660. doi:  10.1038/s41564-022-01200-1
    [106] Novick K A, Ficklin D L, Stoy P C, et al, 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes[J]. Nature Climate Change, 6(11): 1023-1027. doi:  10.1038/nclimate3114
    [107] Peng C H, Ma Z H, Lei X D, et al, 2011. A drought-induced pervasive increase in tree mortality across Canada's boreal forests[J]. Nature Climate Change, 1(9): 467-471. doi:  10.1038/nclimate1293
    [108] Phillips O L, Aragão L E O C, Lewis S L, et al, 2009. Drought sensitivity of the Amazon rainforest[J]. Science, 323(5919): 1344-1347. doi:  10.1126/science.1164033
    [109] Ping J Y, Zhou J, Huang K, et al, 2021. Modeling the typhoon disturbance effect on ecosystem carbon storage dynamics in a subtropical forest of China's coastal region[J]. Ecological Modelling, 455: 109636. doi:  10.1016/j.ecolmodel.2021.109636
    [110] Pörtner H O, Roberts D C, Tignor M, et al, 2022. Climate change 2022: impacts, adaptation and vulnerability. Contribution of Working Group II to the sixth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK and New York, NY, USA: Cambridge University Press.
    [111] Reichstein M, Ciais P, Papale D, et al, 2007. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis[J]. Global Change Biology, 13(3): 634-651. doi:  10.1111/j.1365-2486.2006.01224.x
    [112] Roshani, Sajjad H, Kumar P, et al, 2022. Forest vulnerability to climate change: a review for future research framework[J]. Forests, 13(6): 917. doi:  10.3390/f13060917
    [113] Schenk H J, Jackson R B, 2005. Mapping the global distribution of deep roots in relation to climate and soil characteristics[J]. Geoderma, 126(1): 129-140. doi:  10.1016/j.geoderma.2004.11.018
    [114] Schimel J P, 2018. Life in dry soils: effects of drought on soil microbial communities and processes[J]. Annual Review of Ecology, Evolution, and Systematics, 49(1): 409-432. doi:  10.1146/annurev-ecolsys-110617-062614
    [115] Schimel J, Balser T C, Wallenstein M, 2007. Microbial stress-response physiology and its implications for ecosystem function[J]. Ecology, 88(6): 1386-1394. doi:  10.1890/06-0219
    [116] Schlaepfer D R, Bradford J B, Lauenroth W K, et al, 2017. Climate change reduces extent of temperate drylands and intensifies drought in deep soils[J]. Nature Communications, 8(1): 14196. doi:  10.1038/ncomms14196
    [117] Shao J J, Zhou X H, Zhang P P, et al, 2023. Embolism resistance explains mortality and recovery of five subtropical evergreen broadleaf trees to persistent drought[J]. Ecology, 104(2): e3877. doi:  10.1002/ecy.3877
    [118] Shi L L, Wang H M, Zhang W J, et al, 2013. Spatial response patterns of subtropical forests to a heavy ice storm: a case study in Poyang Lake Basin, southern China[J]. Natural Hazards, 69(3): 2179-2196. doi:  10.1007/s11069-013-0800-1
    [119] Simon E, Canarini A, Martin V, et al, 2020. Microbial growth and carbon use efficiency show seasonal responses in a multifactorial climate change experiment[J]. Communications Biology, 3(1): 584. doi:  10.1038/s42003-020-01317-1
    [120] Song Q H, Fei X H, Zhang Y P, et al, 2017. Snow damage strongly reduces the strength of the carbon sink in a primary subtropical evergreen broadleaved forest[J]. Environmental Research Letters, 12(10): 104014. doi:  10.1088/1748-9326/aa82c4
    [121] Song X Y, Hogan J A, Lin L X, et al, 2018. Canopy openness and topographic habitat drive tree seedling recruitment after snow damage in an old-growth subtropical forest[J]. Forest Ecology and Management, 429: 493-502. doi:  10.1016/j.foreco.2018.07.038
    [122] Song X W, Lyu S D, Wen X F, 2020. Limitation of soil moisture on the response of transpiration to vapor pressure deficit in a subtropical coniferous plantation subjected to seasonal drought[J]. Journal of Hydrology, 591: 125301. doi:  10.1016/j.jhydrol.2020.125301
    [123] Steel E J, Fontaine J B, Ruthrof K X, et al, 2019. Changes in structure of over- and midstory tree species in a Mediterranean-type forest after an extreme drought-associated heatwave[J]. Austral Ecology, 44(8): 1438-1450. doi:  10.1111/aec.12818
    [124] Sun G H, Zeng X P, Liu X J, et al, 2007. Effects of moderate high-temperature stress on photosynthesis in three saplings of the constructive tree species of subtropical forest[J]. Acta Ecologica Sinica, 27(4): 1283-1290. doi:  10.1016/S1872-2032(07)60029-8
    [125] Su X L, Su X, Zhou G Y, et al, 2020. Drought accelerated recalcitrant carbon loss by changing soil aggregation and microbial communities in a subtropical forest[J]. Soil Biology and Biochemistry, 148: 107898. doi:  10.1016/j.soilbio.2020.107898
    [126] Sun X M, Wen X F, Yu G R, et al, 2006. Seasonal drought effects on carbon sequestration of a mid-subtropical planted forest of southeastern China[J]. Science in China Series D: Earth Sciences, 49(2): 110-118. doi:  10.1007/s11430-006-8310-6
    [127] Tan Z H, Zhang Y P, Schaefer D, et al, 2011. An old-growth subtropical Asian evergreen forest as a large carbon sink[J]. Atmospheric Environment, 45(8): 1548-1554. doi:  10.1016/j.atmosenv.2010.12.041
    [128] Tang Y K, Wen X F, Sun X M, et al, 2014. The limiting effect of deep soilwater on evapotranspiration of a subtropical coniferous plantation subjected to seasonal drought[J]. Advances in Atmospheric Sciences, 31(2): 385-395. doi:  10.1007/s00376-013-2321-y
    [129] Terradas J, Peñuelas J, Lloret F, 2009. The fluctuation niche in plants[J]. International Journal of Ecology, 2009: 959702. doi:  10.1155/2009/959702
    [130] Teskey R, Wertin T, Bauweraerts I, et al, 2015. Responses of tree species to heat waves and extreme heat events[J]. Plant Cell Environment, 38(9): 1699-1712. doi:  10.1111/pce.12417
    [131] Teuling A J, Seneviratne S I, Stöckli R, et al, 2010. Contrasting response of European forest and grassland energy exchange to heatwaves[J]. Nature Geoscience, 3(10): 722-727. doi:  10.1038/ngeo950
    [132] Ungar E D, Rotenberg E, Raz-Yaseef N, et al, 2013. Transpiration and annual water balance of Aleppo pine in a semiarid region: implications for forest management[J]. Forest Ecology and Management, 298: 39-51. doi:  10.1016/j.foreco.2013.03.003
    [133] Urban O, 2003. Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses[J]. Photosynthetica, 41(1): 9-20. doi:  10.1023/A:1025891825050
    [134] Wan J Z, Wang C J, Qu H, et al, 2018. Vulnerability of forest vegetation to anthropogenic climate change in China[J]. Science of the Total Environment, 621: 1633-1641. doi:  10.1016/j.scitotenv.2017.10.065
    [135] Wang F, Liu J, Zou B, et al, 2013. Species-dependent responses of soil microbial properties to fresh leaf inputs in a subtropical forest soil in South China[J]. Journal of Plant Ecology, 7(1): 86-96. doi:  10.1093/jpe/rtt016
    [136] Wei L Z, Qiu Z J, Zhou G Y, et al, 2020. Rainfall interception recovery in a subtropical forest damaged by the great 2008 ice and snow storm in southern China[J]. Journal of Hydrology, 590: 125232. doi:  10.1016/j.jhydrol.2020.125232
    [137] Wen X F, Wang H M, Wang J L, et al, 2010. Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003-2007[J]. Biogeosciences, 7(1): 357-369. doi:  10.5194/bg-7-357-2010
    [138] Werner C, Meredith L K, Ladd S N, et al, 2021. Ecosystem fluxes during drought and recovery in an experimental forest[J]. Science, 374(6574): 1514-1518. doi:  10.1126/science.abj6789
    [139] Wu L W, Zhang Y, Guo X, et al, 2022. Reduction of microbial diversity in grassland soil is driven by long-term climate warming[J]. Nature Microbiology, 7(7): 1054-1062. doi:  10.1038/s41564-022-01147-3
    [140] Wu Z, Dai E, Wu Z, et al, 2019. Future forest dynamics under climate change, land use change, and harvest in subtropical forests in Southern China[J]. Landscape Ecology, 34(4): 843-863. doi:  10.1007/s10980-019-00809-8
    [141] Xie Z H, Wang L Y, Jia B H, et al, 2016. Measuring and modeling the impact of a severe drought on terrestrial ecosystem CO2 and water fluxes in a subtropical forest[J]. Journal of Geophysical Research: Biogeosciences, 121(10): 2576-2587. doi:  10.1002/2016JG003437
    [142] Xiong D C, Yang Z J, Chen G S, et al, 2018. Interactive effects of warming and nitrogen addition on fine root dynamics of a young subtropical plantation[J]. Soil Biology and Biochemistry, 123: 180-189. doi:  10.1016/j.soilbio.2018.05.009
    [143] Xu J X, Xue L, Su Z Y, 2016. Impacts of forest gaps on soil properties after a severe ice storm in a Cunninghamia lanceolata stand[J]. Pedosphere, 26(3): 408-416. doi:  10.1016/s1002-0160(15)60053-4
    [144] Yang B, Wen X F, Sun X M, 2015. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region[J]. Agricultural and Forest Meteorology, 201: 218-228. doi:  10.1016/j.agrformet.2014.11.020
    [145] Yang Y D, Ji Y L, Wang Y Q, et al, 2022. Extreme winter storms have variable effects on the population dynamics of canopy dominant species in an old-growth subtropical forest[J]. Forests, 13(10): 1634. doi:  10.3390/f13101634
    [146] Yao J Y, Liu H P, Huang J P, et al, 2020. Accelerated dryland expansion regulates future variability in dryland gross primary production[J]. Nature Communications, 11(1): 1665. doi:  10.1038/s41467-020-15515-2
    [147] Yu G R, Chen Z, Piao S L, et al, 2014. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region[J]. Proceedings of the National Academy of Sciences, 111(13): 4910-4915. doi:  10.1073/pnas.1317065111
    [148] Yuan W P, Cai W W, Chen Y, et al, 2016. Severe summer heatwave and drought strongly reduced carbon uptake in Southern China[J]. Scientific Reports, 6(1): 18813. doi:  10.1038/srep18813
    [149] Zhang B B, Xu Q, Gao D Q, et al, 2019. Higher soil capacity of intercepting heavy rainfall in mixed stands than in pure stands in riparian forests[J]. Science of the Total Environment, 658: 1514-1522. doi:  10.1016/j.scitotenv.2018.12.171
    [150] Zhang J, Bruijnzeel L A, van Meerveld H J, et al, 2019. Typhoon-induced changes in rainfall interception loss from a tropical multi-species ‘reforest’[J]. Journal of Hydrology, 568: 658-675. doi:  10.1016/j.jhydrol.2018.11.024
    [151] Zhang J L, Liu S R, Liu C J, et al, 2021. Soil bacterial and fungal richness and network exhibit different responses to long-term throughfall reduction in a warm-temperate oak forest[J]. Forests, 12(2): 165. doi:  10.3390/f12020165
    [152] Zhang K L, Sun L P, Tao J, 2020. Impact of climate change on the distribution of Euscaphis japonica (Staphyleaceae) trees[J]. Forests, 11(5): 525. doi:  10.3390/f11050525
    [153] Zhang X, Chen G S, Cai L X, et al, 2021. Impact assessments of Typhoon Lekima on forest damages in subtropical China using machine learning methods and Landsat 8 OLI imagery[J]. Sustainability, 13(9): 4893. doi:  10.3390/su13094893
    [154] Zhao H B, Li Z J, Zhou G Y, et al, 2020. Aboveground biomass allometric models for evergreen broad-leaved forest damaged by a serious ice storm in southern China[J]. Forests, 11(3): 320. doi:  10.3390/f11030320
    [155] Zhou G Y, Peng C H, Li Y L, et al, 2013. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China[J]. Global Change Biology, 19(4): 1197-1210. doi:  10.1111/gcb.12128
    [156] Zhou G Y, Zhou X H, Liu R Q, et al, 2020. Soil fungi and fine root biomass mediate drought-induced reductions in soil respiration[J]. Functional Ecology, 34(12): 2634-2643. doi:  10.1111/1365-2435.13677
    [157] Zhou L, Wang S Q, Chi Y G, et al, 2015. Responses of photosynthetic parameters to drought in subtropical forest ecosystem of China[J]. Scientific Reports, 5(1): 18254. doi:  10.1038/srep18254
    [158] Zhou X Q, Zhang M Y, Krause S M B, et al, 2021. Soil aeration rather than methanotrophic community drives methane uptake under drought in a subtropical forest[J]. Science of the Total Environment, 792: 148292. doi:  10.1016/j.scitotenv.2021.148292
    [159] Zhou Y B, Newman C, Chen J, et al, 2013. Anomalous, extreme weather disrupts obligate seed dispersal mutualism: snow in a subtropical forest ecosystem[J]. Global Change Biology, 19(9): 2867-2877. doi:  10.1111/gcb.12245
    [160] Zhu L R, Zhou T, Chen B M, et al, 2015. How does tree age influence damage and recovery in forests impacted by freezing rain and snow? [J]. Science China Life Sciences, 58(5): 472-479. doi:  10.1007/s11427-014-4722-2
  • 加载中
图(2)
计量
  • 文章访问数:  849
  • HTML全文浏览量:  356
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-04
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回

    关于网站迁移的通知

     尊敬的各位专家、读者:

    本刊网站将于6月28日起迁移至中国林业科学研究院期刊网(https://journals.caf.ac.cn/ldstxtybhxb/),届时旧网址http://www.ldstxtybhxb.com/将停止访问,如需投稿请直接登录http://edit.caf.ac.cn/ldstxtybhxb。由此给您带来不便,敬请谅解!

    如有任何问题,请及时联系编辑部,Tel:010-62889503;E-mail:ldstxtybh@caf.ac.cn。

     

    陆地生态系统与保护学报

    2024-06-25