留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常见鸟类多样性调查方法的比较与应用研究

吴颢林 汪慧琳 张伦然 彭友贵 张强

吴颢林, 汪慧琳, 张伦然, 彭友贵, 张强. 常见鸟类多样性调查方法的比较与应用研究[J]. 陆地生态系统与保护学报, 2023, 3(4): 74-86. doi: 10.12356/j.2096-8884.2023-0025
引用本文: 吴颢林, 汪慧琳, 张伦然, 彭友贵, 张强. 常见鸟类多样性调查方法的比较与应用研究[J]. 陆地生态系统与保护学报, 2023, 3(4): 74-86. doi: 10.12356/j.2096-8884.2023-0025
Haolin Wu, Huilin Wang, Lunran Zhang, Yougui Peng, Qiang Zhang. Comparison and Application of Survey Methods of Bird Diversity[J]. Terrestrial Ecosystem and Conservation, 2023, 3(4): 74-86. doi: 10.12356/j.2096-8884.2023-0025
Citation: Haolin Wu, Huilin Wang, Lunran Zhang, Yougui Peng, Qiang Zhang. Comparison and Application of Survey Methods of Bird Diversity[J]. Terrestrial Ecosystem and Conservation, 2023, 3(4): 74-86. doi: 10.12356/j.2096-8884.2023-0025

常见鸟类多样性调查方法的比较与应用研究

doi: 10.12356/j.2096-8884.2023-0025
基金项目: 科技基础资源调查专项(2022FY100500);广东省林业局国家重点野生动物保护监测项目(2022-2023);广东省林业科技创新项目(2023KJCX029);南部战区空军保障部鸟情专项调查研究技术服务项目(2020-096)
详细信息
    作者简介:

    吴颢林:E-mail: 234726684@qq.com

    通讯作者:

    E-mail: pygui2000@163.com

    zhangqiang06@giz.gd.cn

  • 中图分类号: N31

Comparison and Application of Survey Methods of Bird Diversity

  • 摘要: 在鸟类多样性研究中,种类和数量是评估物种受胁状况、种群动态、群落结构特征、生态系统功能和栖息地质量的常用参数。受到鸟类生态类型多样、行为特征和生活史差异较大等因素的影响,野外调查结果与鸟类多样性的实际情况存在一定偏差。本文整理了7种常见鸟类多样性调查方法的概念和调查统计指标,包括标图法、直接计数法、样线法、样点法、红外相机调查法、网捕法和鸣声调查法,并对比了各方法的优缺点,以及在不同生境、不同鸟类类群间的适用性和生态假设条件。建议根据研究目的和对象选择合适的调查方法,并多方法综合使用,如样点法和样线法的适用范围最广,但活动隐蔽或数量稀少的鸟类需借助网捕、红外相机或鸣声法补充调查。其次提出传统方法与新技术的结合使用,如水鸟调查中结合无人机和地面直接计数,雉科鸟类调查中结合红外相机和标图法,将有效提高调查效率和准确度。最后强调鸟类多样性调查方法的标准化对今后我国鸟类学群落理论研究、大尺度多样性监测网络与评价体系建设、区域保护策略制定具有重要推动作用。
  • 图  1  鸟类多样性调查方法选择流程图

    Figure  1.  Flowchart for selecting methods for bird biodiversity surveys

    附录 Supplementary Material
    下载: 导出CSV

    1  鸟类多样性调查方法示意图、野外工作流程与数量统计指标

    1.   Schematic diagram, field work flow and statistical indicators of bird survey methods

    调查方法
    Methods
    示意图
    Schematic diagram
    野外工作流程
    Field work flow
    数量统计指标
    Statistical indicators
    标图法
    Territory mapping
    1.根据调查对象和栖息地确定样地面积、调查路线、时间和次数,按比例制作样地图;
    2.在样地中调查鸟类,将所有发现的同种鸟类及其痕迹、活动,特别是求偶、争斗、巢址等与领域相关的信息,准确定位标记到样地图中,作为调查图(visit map) ,每次调查1张;
    3.同种鸟类的每次调查的信息都转换记录至其种类图(species map) ,每种1张;
    4.结合种类图中多次调查所记录的位点及其信息(如▲代表鸟类个体,■代表巢址,∽代表领域争斗行为),圈出互不重叠的位点群,为大致的鸟类领域边界。
    $ D = \dfrac{{c \cdot n}}{s} $
    D为种群密度,c为总位点群数,n为每一位点群内平均个体数,s为样地面积
    直接计数法
    Individual counts


    直接计数法:
    直接数出集群个体数量

    直接辨认种类并计算种群数量
    集团统计法:
    设定包含n个个体的小集团,通过数小集团数量从而估计总集群数量
    (图中以10个一组为例,共6组,即估算该集群包含60个个体)
    样线法
    Line transects
    1.系统或分层随机选择调查样线,充分代表样地;
    2.按需设置调查重复次数、前进速度、样线长度l和调查宽度w等;
    3.根据上述要求,沿样线匀速前进,按距离带(如0<w1<25 m,w2>25 m)调查记录鸟类个体(①和③位于调查带w1,②和④位于w2) ;或测定所有个体至样线的实际距离h
    4.一定时间间隔后重复调查,分析数据。

    $ D = \dfrac{n}{{{\text{2}} \cdot l \cdot w}} $
    D为种群密度,n为调查记录鸟类个体数,l为样线长度,w为单侧截线宽度
    以单位时间或路线的遇见率代表相对数量
    样点法
    Point transects
    1.系统或分层随机选择调查样点,充分代表样地;
    2.按需设置样点数量、调查持续时间、重复次数和调查半径r 等;
    3.调查者静止在样点中心p,按距离区(如0<r1<50 m,r2>50 m)调查记录鸟类个体(①和②位于调查区r1,③和④位于r2) ;或测定所有个体至样点中心的实际距离h
    4.一定时间间隔后重复调查,分析数据。


    $ D = \dfrac{n}{{3.14{r^{\text{2}}}}} $
    D为种群密度,n为调查记录鸟类个体数,r为截线半径
    以每个样点的平均个体数或出现频度代表相对数量
    红外相机
    调查法
    Camera trapping
    1.根据调查目的和需要选择红外相机布设点;
    2.设置红外相机,自动监测前方一定距离的区域,当有野生动物出现会触发设备,拍摄照片与动态影像;
    3.回收红外相机监测数据与处理分析。
    相对多度指数:
    $ {\text{RAI}} = \dfrac{{\displaystyle\sum\nolimits_{i = 1} {{N_i}} }}{{\displaystyle\sum\nolimits_{i = 1} {Trapda{y_i}} }} \times 100 $
    Trapdayi为相机位点i的拍摄天数,Ni为相机位点i拍摄的某一物种的有效照片数
    相对丰富度指数:
    $ {\text{SA}}{{\text{I}}_{}} = \dfrac{{{A_i}}}{N} \times 100 $
    Ai为目标物种的独立有效照片数,N为所有物种的独立有效照片数
    网捕法
    Mist netting
    1.根据研究目的确定雾网架设位置、时长、类型、调查次数等,向相关管理部门提出申请并获取批准;
    2.清理网场,架设雾网(森林鸟类群落调查中网场通常高约3 m,长13~15 m,宽1~2 m;雾网规格一般长12 m,高2.5 m,网眼36 mm) ;
    3.每隔一段时间检查、记录上网鸟类。

    标记重捕模型:
    $ P = \dfrac{{a \cdot n}}{r} $
    P为种群数量,a为标记个体数量,n为第2次捕获个体总数,r为第2次捕获标记个体数
    以网捕率表示相对种群数量
    鸣声调查法
    Vocalization surveying


    鸣声回放法:
    播放目标物种鸣声,吸引其作出回应或接近声源等反应

    协助鸟类数量调查


    鸣声计数法:
    1.通过主、被动的录音设备采集鸟类鸣声;
    2.使用相关的电脑软件分析声音特征,绘制声谱图(sound spectrogram)
    量化分析鸣声特点差异或声音指数。

    分析鸣声声谱图区分物种,或使用生物声学指数等声音指数反映鸟类多样性
    下载: 导出CSV

    2  不同鸟类调查方法的适用性与生态假设条件

    2.   Ecological applicability and assumptions of each bird survey methods

    调查方法
    Methods
    适宜生境
    Habitat
    适宜鸟种
    Bird characteristics
    缺点
    Insufficient
    生态假设条件
    Ecological assumptions
    标图法
    Territory mapping
    平坦生境,植被稀疏繁殖期间领域性行为明显人力成本高,效率低①繁殖期间鸟类都具有领域性,且总在领域内活动;
    ②鸟类成对,每一领域内具有2个个体;
    ③样地内所有鸟类个体的发现率相同,能被正确发现和记录;
    ④调查结果不受调查人员活动、植被结构等因素影响;
    ⑤除了要求最小面积外,面积因素对结果无影响。
    直接计数法
    Individual counts
    宽阔生境,遮挡少小范围集群活动估算数量受调查者主观影响①调查者能正确识别鸟类种类并准确数出集群数量;
    ②一定时间、范围内,同种鸟类的大部分个体集群活动,集群大小反映其种群数量。
    样线法
    Line transects
    可视距离高,植被稀疏较易发现,样地中分布密度低对珍稀、罕见鸟种的调查效果较差①完整记录调查范围内的鸟类;
    ②鸟类不因调查者的存在而进出调查范围;
    ③所有发现的个体都相互独立,未被重复记录;
    ④准确测定鸟类个体至样线(样点)的距离;
    ⑤每次鸟类调查相互独立;
    ⑥正确鉴别所有的鸟类。
    样点法
    Point transects
    可视距离低、异质性高、斑块状生境较易发现,样地中分布均匀对珍稀、罕见鸟种的调查效果较差
    红外相机调查法
    Camera trapping
    隐蔽布设红外相机地面及林下层活动主要适用于地栖性鸟类①调查物种间差异明显,能准确识别种类;
    ②照片拍摄率与鸟类的密度呈正相关;
    ③红外相机设置隐蔽,没有对鸟类行为活动造成影响。
    网捕法
    Mist netting
    林地森林内部鸟难以调查林冠层活动的鸟类,鸟类有受伤和死亡的风险标记重捕模型:
    ①种群封闭,种群数量在监测期内不变;
    ②个体间被捕获的概率相等;
    ③标记不影响个体的正常活动,且留存时间不能短于监测时间;
    ④第2次取样前个体充分均匀混合。
    网捕率表示相对多度:
    ①网捕率与鸟类的密度呈正相关;
    ②网捕过程没有影响鸟类的行为。
    鸣声调查法
    Vocalization surveying
    噪音干扰较小鸣声明显、独特难以监测少鸣叫的种类和个体鸣声计数:
    ①不同鸟类具有独特的鸣声,可区分其差异;
    ②能采集得到目标物种的高质量录音。
    声音指数反映多样性:
    ①鸟类鸣声具有特异性,随着物种数增加,鸣声特征将更加多样,表现为声音指数数值的变化。
    下载: 导出CSV
  • [1] 陈立军, 肖文宏, 肖治术, 2019. 物种相对多度指数在红外相机数据分析中的应用及局限[J]. 生物多样性, 27(3): 243-248. doi:  10.17520/biods.2018327
    [2] 崔鹏, 徐海根, 丁晖, 等, 2013. 我国鸟类监测的现状、问题与对策[J]. 生态与农村环境学报, 29(3): 403-408. doi:  10.3969/j.issn.1673-4831.2013.03.023
    [3] 冯晓娟, 米湘成, 肖治术, 等, 2019. 中国生物多样性监测与研究网络建设及进展[J]. 中国科学院院刊, 34(12): 1389-1398. doi:  10.16418/j.issn.1000-3045.2019.12.008
    [4] 郜二虎, 王志臣, 王维胜, 等, 2014. 全国第二次陆生野生动物资源调查总体思路[J]. 野生动物学报, 35(2): 238-240. doi:  10.3969/j.issn.1000-0127.2014.02.025
    [5] 金麟雨, 李舒萌, 刘艳艳, 等, 2022. 样线法和网捕法在机场鸟情调查中的应用比较[J]. 生态学报, 42(22): 9348-9358. doi:  10.5846/stxb202107021763
    [6] 雷倩, 李金亚, 马克明, 2018. 遥感技术在鸟类生态学研究中的应用[J]. 生物多样性, 26(8): 862-877. doi:  10.17520/biods.2018143
    [7] 李杰, 刘强, 2019. 无人机水禽监测模式的设立原则探讨[J]. 热带地理, 39(4): 546-552. doi:  10.13284/j.cnki.rddl.003145
    [8] 李晟, 王大军, 肖治术, 等, 2014. 红外相机技术在我国野生动物研究与保护中的应用与前景[J]. 生物多样性, 22(6): 685-695. doi:  10.3724/SP.J.1003.2014.14203
    [9] 李周园, 叶小洲, 王少鹏, 2021. 生态系统稳定性及其与生物多样性的关系[J]. 植物生态学报, 45(10): 1127-1139. doi:  10.17521/cjpe.2020.0116
    [10] 刘志发, 杨昌腾, 龚粤宁, 2018. 广东南岭国家级自然保护区森林鸟类多样性监测[J]. 热带地理, 38(3): 328-336. doi:  10.13284/j.cnki.rddl.003050
    [11] 袁志胜, 邢家华, 乔慧捷, 等, 2022. 基于同步计数和分区直数法相结合的鸟类多样性快速调查——以2020年冬季拉鲁湿地监测为例[J]. 高原科学研究, 6(3): 45-52. doi:  10.16249/j.cnki.2096-4617.2022.03.006
    [12] 伦可环, 张雁云, 夏灿玮, 2017. 基于声音指数的鸟类多样性监测[J]. 生物学通报, 52(11): 1-5. doi:  10.3969/j.issn.0006-3193.2017.11.001
    [13] 马嘉慧, 刘阳, 雷进宇, 2006. 鸟类调查方法实用手册[M]. 香港: 香港观鸟会有限公司.
    [14] 斯幸峰, 丁平, 2011. 欧美陆地鸟类监测的历史、现状与我国的对策[J]. 生物多样性, 19(3): 303-310. doi:  10.3724/SP.J.1003.2011.08314
    [15] 田园, 冯永军, 张春兰, 等, 2015. 样线法在南方山地生态系统野生动物调查中的试点效果评价[J]. 生物多样性, 23(1): 109-115. doi:  10.17520/biods.2014128
    [16] 文云燕, 谢以昌, 李学红, 2016. 恐龙河州级自然保护区绿孔雀监测探讨[J]. 林业调查规划, 41(4): 69-71. doi:  10.3969/j.issn.1671-3168.2016.04.015
    [17] 吴飞, 杨晓君, 2008. 样点法在森林鸟类调查中的运用[J]. 生态学杂志, 27(12): 2240-2244. doi:  10.13292/j.1000-4890.2008.0054
    [18] 肖华, 张雁云, 2009. 鸟类鸣声研究[J]. 生物学通报, 44(3): 11-13. doi:  10.3969/j.issn.0006-3193.2009.03.003
    [19] 徐昌新, 阮禄章, 胡振鹏, 等, 2014. 鄱阳湖越冬鸟类种群动态与保护研究[J]. 长江流域资源与环境, 23(3): 407-414. doi:  10.11870/cjlyzyyhj201403015
    [20] 徐海根, 崔鹏, 朱筱佳, 等, 2018. 全国鸟类多样性观测网络(China BON-Birds)建设进展[J]. 生态与农村环境学报, 34(1): 1-11. doi:  10.11934/j.issn.1673-4831.2018.01.001
    [21] 许龙, 张正旺, 丁长青, 2003. 样线法在鸟类数量调查中的运用[J]. 生态学杂志, 22(5): 127-130. doi:  10.3321/j.issn:1000-4890.2003.05.029
    [22] 张倩雯, 龚粤宁, 宋相金, 等, 2018. 红外相机技术与其他几种森林鸟类多样性调查方法的比较[J]. 生物多样性, 26(3): 229-237. doi:  10.17520/biods.2017275
    [23] 张文文, 雍凡, 崔鹏, 2017. 国际鸟类监测项目抽样策略及对我国的启示[J]. 野生动物学报, 38(4): 689-693. doi:  10.3969/j.issn.1000-0127.2017.04.031
    [24] 郑光美, 2012. 鸟类学[M]. 2版. 北京: 北京师范大学出版社.
    [25] 朱淑怡, 段菲, 李晟, 2017. 基于红外相机网络促进我国鸟类多样性监测: 现状、问题与前景[J]. 生物多样性, 25(10): 1114-1122. doi:  10.17520/biods.2017057
    [26] 邹发生, 陈桂珠, 2003. 雾网在森林鸟类群落研究中的应用[J]. 应用生态学报, 14(9): 1557-1560. doi:  10.3321/j.issn:1001-9332.2003.09.033
    [27] 邹发生, 陈桂珠, 2004. 海南岛尖峰岭热带山地雨林林下鸟类群落研究[J]. 生态学报, 24(3): 510-516. doi:  10.3321/j.issn:1000-0933.2004.03.017
    [28] Anich N M, Benson T J, Bednarz J C, 2009. Estimating territory and home-range sizes: do singing locations alone provide an accurate estimate of space use[J]. Auk, 126(3): 626-634. doi:  10.1525/auk.2009.08219
    [29] Barr J R, Green M C, Demaso S J, et al, 2020. Drone surveys do not increase colony-wide flight behaviour at waterbird nesting sites, but sensitivity varies among species[J]. Scientific Reports, 10(1): 3781. doi:  10.1038/s41598-020-60543-z
    [30] Bibby C J, 2000. Bird census techniques[M]. New York: Academic Press.
    [31] Blake J G, Loiselle B A, 2001. Bird assemblages in second-growth and old-growth forests, costa rica: perspectives from mist nets and point counts[J]. Auk, 118(2): 304-326. doi:  10.1093/auk/118.2.304
    [32] Broughton R K, Hill R A, Freeman S N, et al, 2012. Describing habitat occupation by woodland birds with territory mapping and remotely sensed data: an example using the Marsh Tit (Poecile palustris)[J]. Condor, 114(4): 812-822. doi:  10.1525/cond.2012.110171
    [33] Chen C W, Holyoak M, Si X F, et al, 2018. Do seasonal species assemblages differ in their biogeography? Evidence from the spatial structure of bird communities on land-bridge islands[J]. Journal of Biogeography, 45(2): 473-483. doi:  10.1111/jbi.13112
    [34] Chris L, Michael J M, Robert J F, 2005. Combining archive territory mapping data and aerial photography to investigate bird-habitat relationships: a case study from the lincolnshire coast[J]. Bird Study, 52(3): 314-322. doi:  10.1080/00063650509461405
    [35] Conway C J, 2011. Standardized North American marsh bird monitoring protocol[J]. Waterbirds, 34(3): 319-346. doi:  10.1675/063.034.0307
    [36] Cutler T L, Swann D E, 1999. Using remote photography in wildlife ecology: a review[J]. Wildlife Society Bulletin, 27(3): 571-581.
    [37] David S D, Adam C R, 1998. Comparison of line-transect, spot-map, and point-count surveys for birds in riparian habitats of the great basin[J]. Journal of Field Ornithology, 69(3): 430-443.
    [38] Ding Z F, Feeley K J, Wang Y P, et al, 2013. Patterns of bird functional diversity on land-bridge island fragments[J]. The Journal of Animal Ecology, 82(4): 781-790. doi:  10.1111/1365-2656.12046
    [39] Freeman B, 2014. Sexual niche partitioning in two species of new guinean pachycephala whistlers[J]. Journal of Field Ornithology, 85(1): 23-30. doi:  10.1111/jofo.12046
    [40] Gottschalk T K, Huettmann F, 2011. Comparison of distance sampling and territory mapping methods for birds in four different habitats[J]. Journal of Ornithology, 152(2): 421-429. doi:  10.1007/s10336-010-0601-1
    [41] Greig-Smith P W, 1980. Ranging behaviour of birds in savanna and riverine forest habitats in ghana[J]. Ibis, 122(1): 109-116. doi:  10.1111/j.1474-919x.1980.tb00879.x
    [42] Howell C A, Porneluzi P A, Clawson R L, et al, 2004. Breeding density affects point-count accuracy in missouri forest birds[J]. Journal of Field Ornithology, 75(2): 123-133. doi:  10.1648/0273-8570-75.2.123
    [43] Hu W Z, Wu F, Gao J Y, et al, 2017. Influences of interpolation of species ranges on elevational species richness gradients[J]. Ecography, 40(10): 1231-1241. doi:  10.1111/ecog.02534
    [44] Hua F, Wang X, Zheng X, et al, 2016. Opportunities for biodiversity gains under the world's largest reforestation programme[J]. Nature Communications, 7(1): 12711-12717. doi:  10.1038/ncomms12717
    [45] Kotowska D, Skorka P, Walasz K, 2019. Delineating the number of animal territories using digital mapping and spatial hierarchical clustering in gis technology[J]. Ecological Indicators, 107: 105670. doi:  10.1016/j.ecolind.2019.105670
    [46] Li S, Mcshea W J, Wang D, et al, 2010. The use of infrared-triggered cameras for surveying phasianids in Sichuan Province, China[J]. Ibis, 152(2): 299-309. doi:  10.1111/j.1474-919x.2009.00989.x
    [47] Li Z Y, Zhang H, Xu Y J, et al, 2021. Composition of ‘fast–slow’ traits drives avian community stability over North America[J]. Functional Ecology, 35(12): 2831-2840. doi:  10.1111/1365-2435.13909
    [48] Lin C W, Hsu F H, Ding T S, 2011. Applying a territory mapping method to census the breeding bird community composition in a montane forest of Taiwan[J]. Taiwan Journal of Forest Science, 26(3): 267-285.
    [49] Macarthur R H, Macarthur A T, 1974. On the use of mist nets for population studies of birds[J]. Proceedings of the National Academy of Sciences of the United States of America, 71(8): 3230-3233. doi:  10.1073/pnas.71.8.3230
    [50] Mosher J A, Fuller M R, Kopeny M, 1990. Surveying woodland raptors by broadcast of conspecific vocalizations[J]. Journal of Field Ornithology, 61(4): 453-461.
    [51] Qian F W, Jiang H X, Yu G H, et al, 2012. Survey of breeding populations of the Red-Crowned Crane (Grus japonensis) in the Songnen Plain, northeastern China[J]. Chinese Birds, 3(03): 217-224. doi:  10.5122/cbirds.2012.0028
    [52] Ratcliffe N, Vaughan D, Whyte C, et al, 1998. Development of playback census methods for Storm Petrels Hydrobates pelagicus[J]. Bird Study, 45(3): 302-312. doi:  10.1080/00063659809461101
    [53] Shen Y, Holyark M, Goodale E, et al, 2022. Mixed-species bird flocks re-assemble interspecific associations across an elevational gradient[J]. Proceedings of the Royal Society B, 289(1989): 20221840. doi:  10.1098/rspb.2022.1840
    [54] Si X F, Pimm S L, Russell G J, et al, 2014. Turnover of breeding bird communities on islands in an inundated lake[J]. Journal of Biogeography, 41(12): 2283-2292. doi:  10.1111/jbi.12379
    [55] Si X F, Cadotte M W, Zeng D, et al, 2017. Functional and phylogenetic structure of island bird communities[J]. The Journal of Animal Ecology, 86(3): 532-542. doi:  10.1111/1365-2656.12650
    [56] Spotswood E N, Goodman K R, Carlisle J, et al, 2012. How safe is mist netting? Evaluating the risk of injury and mortality to birds[J]. Methods in Ecology and Evolution, 3(1): 29-38. doi:  10.1111/j.2041-210x.2011.00123.x
    [57] Sueur J, Pavoine S, Hamerlynck O, et al, 2008. Rapid acoustic survey for biodiversity appraisal[J]. PLoS ONE, 3(12): e4065. doi:  10.1371/journal.pone.0004065
    [58] Wang R X, Wu F, Chang Y Y, et al, 2016. Waterbirds and their habitat utilization of artificial wetlands at Dianchi Lake: implication for waterbird conservation in Yunnan–Guizhou Plateau Lakes[J]. Wetlands, 36(6): 1087-1095. doi:  10.1007/s13157-016-0823-y
    [59] Wang Y P, Bao Y X, Yu M J, et al, 2010. Nestedness for different reasons: the distributions of birds, lizards and small mammals on islands of an inundated lake[J]. Diversity and Distributions, 16(5): 862-873. doi:  10.1111/j.1472-4642.2010.00682.x
    [60] Wang Y P, Zhang M, Wang S Y, et al, 2012. No evidence for the small-island effect in avian communities on islands of an inundated lake[J]. Oikos, 121(12): 1945-1952. doi:  10.1111/j.1600-0706.2012.20322.x
    [61] Williams A B, 1936. The composition and dynamics of a beech-maple climax community[J]. Ecological Monographs, 6(3): 317-408. doi:  10.2307/1943219
    [62] Wilson R R, Twedt D J, Elliott A B, 2000. Comparison of line transects and point counts for monitoring spring migration in forested wetlands[J]. Journal of Field Ornithology, 71(2): 345-355. doi:  10.1648/0273-8570-71.2.345
    [63] Wu F, Yang X J, Yang J X, 2010. Additive diversity partitioning as a guide to regional montane reserve design in Asia: an example from Yunnan Province, China[J]. Diversity and Distributions, 16(6): 1022-1033. doi:  10.1111/j.1472-4642.2010.00710.x
    [64] Zhang Q, Han R, Zou F, 2011. Effects of artificial afforestation and successional stage on a lowland forest bird community in southern China[J]. Forest Ecology and Management, 261(11): 1738-1749. doi:  10.1016/j.foreco.2011.01.025
    [65] Zhang Q, Han R, Huang Z, et al, 2013. Linking vegetation structure and bird organization: response of mixed-species bird flocks to forest succession in subtropical China[J]. Biodiversity and Conservation, 22(9): 1965-1989. doi:  10.1007/s10531-013-0521-5
    [66] Zhang Q, Wu J, Sun Y, et al, 2015. Do bird assemblages predict susceptibility by e-waste pollution? A comparative study based on species- and guild-dependent responses in China agroecosystems[J]. PLoS ONE, 10(3): e122264. doi:  10.1371/journal.pone.0122264
    [67] Zhang Q, Hong Y, Zou F, et al, 2016. Avian responses to an extreme ice storm are determined by a combination of functional traits, behavioural adaptations and habitat modifications[J]. Scientific Reports, 6(1): 22344. doi:  10.1038/srep22344
    [68] Zhang Q, Holyoak M, Chen C, et al, 2020a. Trait-mediated filtering drives contrasting patterns of species richness and functional diversity across montane bird assemblages[J]. Journal of Biogeography, 47(1): 301-312. doi:  10.1111/jbi.13738
    [69] Zhang Q, Holyoak M, Goodale E, et al, 2020b. Trait-environment relationships differ between mixed-species flocking and nonflocking bird assemblages[J]. Ecology, 101(10): e3124. doi:  10.1002/ecy.3124
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  372
  • HTML全文浏览量:  1083
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-04
  • 录用日期:  2023-06-28
  • 网络出版日期:  2023-10-07
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回

    关于网站迁移的通知

     尊敬的各位专家、读者:

    本刊网站将于6月28日起迁移至中国林业科学研究院期刊网(https://journals.caf.ac.cn/ldstxtybhxb/),届时旧网址http://www.ldstxtybhxb.com/将停止访问,如需投稿请直接登录http://edit.caf.ac.cn/ldstxtybhxb。由此给您带来不便,敬请谅解!

    如有任何问题,请及时联系编辑部,Tel:010-62889503;E-mail:ldstxtybh@caf.ac.cn。

     

    陆地生态系统与保护学报

    2024-06-25