留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳氢氧稳定同位素在林草复合生态系统水循环过程研究中的应用

徐庆 左海军 高德强 张蓓蓓

徐庆, 左海军, 高德强, 张蓓蓓. 碳氢氧稳定同位素在林草复合生态系统水循环过程研究中的应用[J]. 陆地生态系统与保护学报, 2021, 1(1): 82-89. doi: 10.12356/j.2096-8884.XQ20210325
引用本文: 徐庆, 左海军, 高德强, 张蓓蓓. 碳氢氧稳定同位素在林草复合生态系统水循环过程研究中的应用[J]. 陆地生态系统与保护学报, 2021, 1(1): 82-89. doi: 10.12356/j.2096-8884.XQ20210325
Qing XU, Haijun ZUO, Deqiang GAO, Beibei ZHANG. Applications of Carbon, Hydrogen and Oxygen Stable Isotopes on Hydrologic Cycle Processes of Mixed Tree-Grass Ecosystems: Literature Review[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 82-89. doi: 10.12356/j.2096-8884.XQ20210325
Citation: Qing XU, Haijun ZUO, Deqiang GAO, Beibei ZHANG. Applications of Carbon, Hydrogen and Oxygen Stable Isotopes on Hydrologic Cycle Processes of Mixed Tree-Grass Ecosystems: Literature Review[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 82-89. doi: 10.12356/j.2096-8884.XQ20210325

碳氢氧稳定同位素在林草复合生态系统水循环过程研究中的应用

doi: 10.12356/j.2096-8884.XQ20210325
基金项目: 国家自然科学基金(31870716,31670720);中央级公益性科研院所基本科研业务费专项资金重点项目(CAFYBB2017ZB003)
详细信息
    作者简介:

    徐庆:E-mail: xuqing@caf.ac.cn

    通讯作者:

    E-mail: xuqing@caf.ac.cn

  • 中图分类号: Q948.11

Applications of Carbon, Hydrogen and Oxygen Stable Isotopes on Hydrologic Cycle Processes of Mixed Tree-Grass Ecosystems: Literature Review

  • 摘要: 林草复合生态系统是指由多年生木本植物(乔木、灌木等)与草本植物在空间上有机结合(长期或短期)形成的多物种、多层次、多时序和多产业复合的植被生态系统。水分是干旱半干旱地区林草复合系统植物生长、分布及植被恢复的主要限制因子。综合分析基于稳定同位素的林草复合生态系统的水循环过程国内外研究进展,对高效利用林草自然资源、提高林草植被生产力、保护生物多样性和改善生态环境等都有重要意义。碳氢氧稳定同位素是存在于天然水体和植物组织中良好的示踪剂,具有较高的灵敏度和准确性,可系统和定量地阐明林草复合生态系统的水循环过程、植物水分利用率、水分利用效率和利用格局,揭示其对全球气候变化的响应机制等。文中概述稳定同位素的基本原理,重点综述氢氧稳定同位素在林草复合生态系统水文过程(包括大气降水、地表水、土壤水、地下水、植物水及蒸发水等)中的应用以及碳稳定同位素应用于植物水分利用效率中的国内外进展,指出了当前在这些林草复合生态系统水循环过程、植被与水循环相互作用机理等方面研究中存在的不足,展望其应用前景。未来研究重点是运用稳定同位素技术,系统地分析和量化气候变化和人为活动对林草复合系统水循环过程和碳水相互作用的影响机制。
  • [1] 陈建生, 赵洪波, 詹泸成, 2016. 赤水林区旱季雾水对地表径流的水量贡献[J]. 水科学进展, 27(3): 377-384.
    [2] 陈平, 孟平, 张劲松, 等, 2014. 华北低丘山区2种林药复合模式的水分利用[J]. 东北林业大学学报, 42(8): 52-56.
    [3] 陈曦, 李志, 程立平, 等, 2016. 黄土塬区大气降水的氢氧稳定同位素特征及水汽来源[J]. 生态学报, 36(1): 98-106.
    [4] 方精云, 白永飞, 李凌浩, 等, 2016. 我国草原牧区可持续发展的科学基础与实践[J]. 科学通报, 61(2): 155-164.
    [5] 何春霞, 张劲松, 黄辉, 等, 2015. 豫东平原3种模式杨树-小麦复合系统水分利用效率的研究[J]. 林业科学研究, 28(5): 660-668.
    [6] 姬王佳, 黄亚楠, 李冰冰, 等, 2019. 陕北黄土区深剖面不同土地利用方式下土壤水氢氧稳定同位素特征[J]. 应用生态学报, 30(12): 4143-4149.
    [7] 蒋有绪, 2018-11-16[2020-09-03]. 积极发展草地科学的理论与实践研究 [N/OL]. 中国绿色时报. http://www.greentimes.com/greentimepaper/html/2018-11/16/content_3327297.htm.
    [8] 李文静, 吕光辉, 张磊, 等, 2019. 干旱区荒漠植物体内潜在水源差异及利用策略分析[J]. 生态环境学报, 28(8): 1557-1566.
    [9] 刘莹, 李鹏, 沈冰, 等, 2017. 采用稳定碳同位素法分析白羊草在不同干旱胁迫下的水分利用效率[J]. 生态学报, 37(9): 3055-3064.
    [10] 罗艺霖. 2010. 台湾桤木林草复合生态系统土壤有机碳含量的研究 [D]. 雅安: 四川农业大学
    [11] 吕婷, 赵西宁, 高晓东, 等, 2017. 黄土丘陵区典型天然灌丛和人工灌丛优势植物土壤水分利用策略[J]. 植物生态学报, 41(2): 175-185.
    [12] 王贺, 李占斌, 马波, 等, 2016. 黄土高原丘陵沟壑区流域不同水体氢氧同位素特征: 以纸坊沟流域为例[J]. 水土保持学报, (4): 85-90.
    [13] 王磊, 孙长忠, 周彬, 2016. 北京九龙山不同结构侧柏人工纯林降水的再分配[J]. 林业科学研究, 29(5): 752-758.
    [14] 王庆伟, 于大炮, 代力民, 等, 2010. 全球气候变化下植物水分利用效率研究进展[J]. 应用生态学报, 21(12): 259-269.
    [15] 王锐, 刘文兆, 宋献方, 等, 2014. 黄土塬区土壤水分运动的氢氧稳定同位素特征研究[J]. 水土保持学报, 28(3): 134-137.
    [16] 王雅舒, 李小雁, 石芳忠, 等, 2019. 退耕还林还草工程加剧黄土高原退耕区蒸散发[J]. 科学通报, 64(5-6): 588-599.
    [17] 徐庆, 安树青, 刘世荣, 等, 2008. 环境同位素在森林生态系统水循环研究中的应用[J]. 世界林业研究, 21(3): 11-15.
    [18] 徐庆, 王婷, 高德强, 2019. 碳氢氧稳定同位素在草地生态系统水循环研究中的应用[J]. 林业科学研究, 32(6): 130-136.
    [19] 徐庆, 2020. 稳定同位素森林水文 [M]. 北京: 中国林业出版社.
    [20] 杨永刚, 李国琴, 焦文涛, 等, 2016. 黄土高原丘陵沟壑区包气带土壤水运移过程[J]. 水科学进展, 27(4): 529-534.
    [21] 云雷, 毕华兴, 田晓玲, 等, 2010. 晋西黄土区林草复合界面雨后土壤水分空间变异规律研究[J]. 生态环境学报, 19(4): 938-944.
    [22] 赵妮, 2019. 洛川塬果-草复合系统水分利用同位素示踪研究[D]. 杨凌: 西北农林科技大学, 31-36.
    [23] 曾艳琼, 卢欣石, 2008. 林草复合生态系统的研究现状及效益分析[J]. 草业科学, 25(3): 33-36.
    [24] 朱珊娴, 肖薇, 张弥, 等, 2017. 加拿大温带落叶林生态系统氢氧同位素组成研究[J]. 生态学报, 37(22): 7539-7551.
    [25] Barbeta A, Ogée J, Peñuelas J, 2018. Stable-isotope techniques to investigate sources of plant water[M]//Sánchez-Moreiras A, Reigosa M. Advances in Plant Ecophysiology Techniques. Cham, Switzerland: Springer, 439-456.
    [26] Bargués T A, Hasselquist N J, Bazié H R, et al, 2017. Strategies trees use to overcome seasonal water limitation in an agroforestry system in semiarid West Africa[J]. Ecohydrology, 10(3): e1808. doi:  10.1002/eco.1808
    [27] Burgess S S O, Adams M A, Turner N C, et al, 2000. Characterisation of hydrogen isotope profiles in an agroforestry system: implications for tracing water sources of trees[J]. Agricultural Water Management, 45(3): 229-241. doi:  10.1016/S0378-3774(00)00105-0
    [28] Cui J, An S, Wang Z, et al, 2009. Using deuterium excess to determine the sources of high-altitude precipitation: Implications in hydrological relations between sub-alpine forests and alpine meadows[J]. Journal of Hydrology, 373(1-2): 24-33. doi:  10.1016/j.jhydrol.2009.04.005
    [29] Dawson T E, 1998. Fog in the California redwood forest: ecosystem inputs and use by plants[J]. Oecologia, 117(4): 476-485. doi:  10.1007/s004420050683
    [30] Gabriel S, 2018. Silvopasture: A guide to managing grazing animals, forage crops, and trees in a temperate farm ecosystem [M]. London: Chelsea Green Publishing.
    [31] Gao X, Liu Z, Zhao X, et al, 2018. Extreme natural drought enhances interspecific facilitation in semiarid agroforestry systems[J]. Agriculture, Ecosystems & Environment, 265: 444-453.
    [32] Gautam M K, Lee K S, Song B Y, 2018. Characterizing groundwater recharge using oxygen and hydrogen isotopes: a case study in a temperate forested region, South Korea[J]. Environmental Earth Sciences, 77(3): 110. doi:  10.1007/s12665-018-7279-8
    [33] Goldsmith G R, Allen S T, Braun S, et al, 2018. Spatial variation in throughfall, soil, and plant water isotopes in a temperate forest[J]. Ecohydrology, 12(2): e2059.
    [34] Jose S, Walter D, Kumar B M, 2019. Ecological considerations in sustainable silvopasture design and management[J]. Agroforestry Systems, 93(1): 317-331. doi:  10.1007/s10457-016-0065-2
    [35] Kleine L, Tetzlaff D, Smith A, et al, 2020. Using water stable isotopes to understand evaporation, moisture stress and re-wetting in catchment forest and grassland soils of the summer drought of 2018[J]. Hydrol. Earth Syst. Sci., 24: 3737-3752. doi:  10.5194/hess-24-3737-2020
    [36] Kondo M, Muraoka H, Uchida M, et al, 2005. Refixation of respired CO2 by understory vegetation in a cool-temperate deciduous forest in Japan[J]. Agricultural and Forest Meteorology, 134(1-4): 110-121. doi:  10.1016/j.agrformet.2005.10.006
    [37] Li Z, Chen X, Liu W, et al, 2017. Determination of groundwater recharge mechanism in the deep loessial unsaturated zone by environmental tracers[J]. Science of the Total Environment, 586: 827-835. doi:  10.1016/j.scitotenv.2017.02.061
    [38] Matthias S, Doerthe T, Chris S, 2017. Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone[J]. Hydrology and Earth System Sciences, 21(7): 3839-3858. doi:  10.5194/hess-21-3839-2017
    [39] Midwood A J, Boutton T W, Archer S R, et al, 1998. Water use by woody plants on contrasting soils in a savanna parkland: assessment with δ2H and δ18O[J]. Plant&Soil, 205(1): 13-24.
    [40] Nair P K R, Nair V D, Kumar B M, et al, 2010. Carbon sequestration in agroforestry systems[M]//Sparks D L. Advances in agronomy. Amsterdam: Academic Press, 108: 237-307.
    [41] Oerter E J, Bowen G J, 2019. Spatiotemporal heterogeneity in soil water stable isotopic composition and its ecohydrologic implications in semi-arid ecosystems[J]. Hydrological Processes, 33(12): 1724-1738. doi:  10.1002/hyp.13434
    [42] Orefice J, Carroll J, Conroy D, et al, 2017. Silvopasture practices and perspectives in the Northeastern United States[J]. Agroforestry Systems, 91(1): 149-160. doi:  10.1007/s10457-016-9916-0
    [43] Pan Y X, Wang X P, Ma X Z, et al, 2020. The stable isotopic composition variation characteristics of desert plants and water sources in an artificial revegetation ecosystem in Northwest China[J]. Catena, 189: 1-10. doi:  10.1016/j.catena.2020.104499
    [44] Pinheiro F M, Nair P K R, 2018. Silvopasture in the Caatinga biome of Brazil: a review of its ecology, management, and development opportunities[J]. Forest Systems, 27(1): 1-16.
    [45] Rey, Kellie Jo, 2016. Using Stable Isotope Hydrology to Partition Evapotranspiration in the Sagebrush Steppe[D]. Boise State University. 1089. " https://scholarworks.boisestate.edu/td/1089
    [46] Soumaya B, Wright W E, Paul S, et al, 2018. Carbon and oxygen isotope fractionations in tree rings reveal interactions between cambial phenology and seasonal climate[J]. Plant, Cell & Environment, 41(12): 2758-2772.
    [47] Vaughan S. 2016. A comparison of soil infiltration rates across silvopasture, open pasture and traditional forest management in central Minnesota [D]. Minnesota: University of Minnesota.
    [48] Welsh K, Boll J, Sánchez‐Murillo R, et al, 2018. Isotope hydrology of a tropical coffee agroforestry watershed: Seasonal and event‐based analyses[J]. Hydrological Processes, 32(13): 1965-1977. doi:  10.1002/hyp.13149
    [49] Wang F, Chen H, Lian J, et al, 2020. Seasonal recharge of spring and stream waters in a karst catchment revealed by isotopic and hydrochemical analyses[J]. Journal of Hydrology, 591: 1-12. doi:  10.1016/j.jhydrol.2020.125595
    [50] Windhorst D, Kraft P, Timbe E, et al, 2014. Stable water isotope tracing through hydrological models for disentangling runoff generation processes at the hillslope scale[J]. Hydrology & Earth System Sciences, 18(10): 4113-4127.
    [51] Wu J, Zeng H, Chen C, et al, 2019. Can intercropping with the Chinese medicinal herbs change the water use of the aged rubber trees?[J]. Agricultural Water Management, 226: 105803.
    [52] Xiang W, Si B C, Biswas A, et al, 2019. Quantifying dual recharge mechanisms in deep unsaturated zone of Chinese Loess Plateau using stable isotopes[J]. Geoderma, 337: 773-781. doi:  10.1016/j.geoderma.2018.10.006
    [53] Xu Q, Li H B, Chen J Q, et al, 2011. Water use patterns of three species in subalpine forest, Southwest China: the deuterium isotope approach[J]. Ecohydrology, 4(2): 236-244. doi:  10.1002/eco.179
    [54] Yepez E A, Williams D G, Scott R L, et al, 2003. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor[J]. Agricultural and Forest Meteorology, 119(1/2): 53-68.
    [55] Zhao L, Wang L, Cernusak L A, et al, 2016. Significant difference in hydrogen isotope composition between xylem and tissue water in Populus euphratica[J]. Plant, Cell & Environment, 39(8): 1848-1857.
    [56] Zhu X, Liu W, Chen J, et al, 2019. Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: a review of evidence and processes[J]. Plant and Soil, 453(4): 45-86.
  • 加载中
计量
  • 文章访问数:  651
  • HTML全文浏览量:  294
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 网络出版日期:  2021-10-19
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回

    关于网站迁移的通知

     尊敬的各位专家、读者:

    本刊网站将于6月28日起迁移至中国林业科学研究院期刊网(https://journals.caf.ac.cn/ldstxtybhxb/),届时旧网址http://www.ldstxtybhxb.com/将停止访问,如需投稿请直接登录http://edit.caf.ac.cn/ldstxtybhxb。由此给您带来不便,敬请谅解!

    如有任何问题,请及时联系编辑部,Tel:010-62889503;E-mail:ldstxtybh@caf.ac.cn。

     

    陆地生态系统与保护学报

    2024-06-25