留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辽宁省森林、湿地与草地景观格局变化及驱动力

许庭毓 牛香 王兵

许庭毓, 牛香, 王兵. 辽宁省森林、湿地与草地景观格局变化及驱动力[J]. 陆地生态系统与保护学报, 2021, 1(1): 38-46. doi: 10.12356/j.2096-8884.XTY20210816
引用本文: 许庭毓, 牛香, 王兵. 辽宁省森林、湿地与草地景观格局变化及驱动力[J]. 陆地生态系统与保护学报, 2021, 1(1): 38-46. doi: 10.12356/j.2096-8884.XTY20210816
Tingyu XU, Xiang NIU, Bing WANG. Landscape Pattern Variations of Forest, Wetland and Grassland Resources and Driving Forces in Liaoning Province, China[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 38-46. doi: 10.12356/j.2096-8884.XTY20210816
Citation: Tingyu XU, Xiang NIU, Bing WANG. Landscape Pattern Variations of Forest, Wetland and Grassland Resources and Driving Forces in Liaoning Province, China[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 38-46. doi: 10.12356/j.2096-8884.XTY20210816

辽宁省森林、湿地与草地景观格局变化及驱动力

doi: 10.12356/j.2096-8884.XTY20210816
基金项目: 十三五国家重点研发计划专题(2017YFC0503804-03);林业科技创新平台运行补助项目(2019132125)
详细信息
    作者简介:

    许庭毓:545566961@qq.com

    通讯作者:

    E-mail: niuxiang@caf.ac.cn

  • 中图分类号: S718.5

Landscape Pattern Variations of Forest, Wetland and Grassland Resources and Driving Forces in Liaoning Province, China

  • 摘要:   目的  比较研究辽宁省2005年和2015年的森林、湿地与草地景观格局变化及驱动力,为3类自然资源的保护工作提供科学支持。  方法  基于2005、2015年2期辽宁省土地利用数据,利用ArcGIS和Fragstats软件计算景观转移矩阵和景观指数,并分析各类资源转化的空间分布,应用主成分分析法对辽宁省森林、湿地与草地景观格局变化的驱动力进行研究。  结果  1)辽宁省森林资源呈现东部多于西部的分布格局,林地景观面积增加了4284 km2,破碎化程度减小,景观转移变化主要发生在西部地区;湿地资源分布呈现沿海大于内陆、集中于河流沿岸的分布格局,近10年来湿地景观面积减小了0.55%,湿地景观形状趋于复杂,单元趋于离散,破碎化程度加剧,景观转移变化主要发生在河流沿岸;草地资源呈现西部多于东部的分布格局,变化率为-5.00%,破碎化程度加剧,斑块数量、面积、密度的3重减少表明草地景观退化程度严重,转移变化面积大且在全省均有分布。2)与2005年相比,2015年景观整体破碎程度加深,离散小单元增多,异质性减弱,原有的景观格局被破坏,主导斑块的控制能力下降。3)辽宁省景观变化的主要驱动因素为人口、经济、政策以及自然环境因素等。  结论  受人为因素和自然因素影响,辽宁省森林景观面积增加,破碎化程度得到改善,而湿地和草地景观存在破碎化程度加深的现象。结合辽宁省森林、湿地、草地景观格局的变化与实际,建议在现有基础上继续加强对森林和湿地资源的保护,草地资源的保护可以借鉴森林资源保护经验,加强立法与保护,从而实现资源的保护和可持续利用。
  • 图  1  2005和2015年辽宁省景观类型

    Figure  1.  Landscape types of Liaoning province in 2005 and 2015

    图  2  2005—2015年辽宁省景观类型面积变化

    Figure  2.  The area changes of landscape types in Liaoning province between 2005 and 2015

    图  3  2005—2015年辽宁省林地、草地、湿地面积变化空间分布

    Figure  3.  The spatial distribution of changed areas of forest, grassland and wetland in Liaoning province from 2005 to 2015

    表  1  景观指数及描述

    Table  1.   Landscape index and description

    景观指数
    Landscape index
    生态学意义
    Ecological Significance
    应用水平
    Level
    计算公式
    Calculation Formula
    斑块数 NP表示景观中斑块的总数,用来衡量景观的复杂程度,斑块数越多说明景观越复杂。Indicates the total number of patches in the landscape, which is used to measure the complexity of the landscape. When the landscape become more complex, the NP is larger.类型/景观
    Class/Landscape
    NP=N
    斑块密度 PD表示单位面积的斑块数,斑块密度越大,表示景观越破碎。Indicates the number of patches per unit area. When the landscape become more fragmented, the PD is larger.类型/景观
    Class/Landscape
           PD=N/A
    式中:A为斑块面积。A is the area of patch.
    景观形状指数LSI表示景观中斑块形状的规则程度,当景观中斑块形状不规则或偏离正方形时,LSI增大。Indicates the regularity of the patch shape in the landscape. When the patch shape in the landscape is irregular or deviates from the square, the LSI increases.类型
    Class
          ${L}{S}{I}=\dfrac{\text{0.25}E}{\sqrt{A_{ } } }$
    式中:E为景观中所有斑块边界总长度。E is the sum of the lengths (m) of all edge segments involving the corresponding patch type.
    散布与并列指标 IJI表示各个斑块类型间的散布与并列情况,IJI接近0时表明斑块类型仅与少数几种其他类型相邻接。Indicates the distribution and juxtaposition of various patch types, IJI approaches 0 when the corresponding patch type is adjacent to only one other patch type.类型
    Class
     ${I}{J}{I} = \dfrac{ { - \displaystyle\sum\limits_{i = 1}^m {\sum\limits_{k = i + 1}^m {\left[ {\left({\dfrac{ { {e_{ik} } } }{E} } \right) \cdot \ln \left({\dfrac{ { {e_{ik} } } }{E} } \right)} \right]} } } }{ {\ln \left[ {0.5m\left({m - 1} \right)} \right]} }\left({100} \right)$
    式中:eik为斑块类型ik之间边缘总长度,m为景观中存在的斑块类型数量。eik is the total length of edge in landscape between patch types i and k; m is the number of patch types present in the landscape.
    平均斑块面积AREA_MN表示各类型景观的平均面积,与斑块数一起可以反映景观的破碎程度,斑块数量越多,平均斑块面积越小,景观越破碎。Indicates the average area of various types of landscapes, which can reflect the degree of fragmentation of the landscape together with the number of patches. When the landscape become more fragmented, the NP is larger and the AREA_MN is smaller.类型
    Class
    ${A}{R}{E}{A}\_{M}{N}=\dfrac{A}{N}1{0}^{-6}$
    聚集度指数AI表示景观水平上不同斑块类型的聚合程度,景观由较多离散小斑块组成时,聚集度较小;景观以连续大斑块或斑块高度连接时,聚集度较大。
    Indicates the degree of aggregation of different patch types at the landscape level. When the landscape is composed of more discrete small patches, the degree of aggregation is smaller; when the landscape is highly connected by continuous large patches, the degree of aggregation is larger.
    类型/景观
    Class/Landscape
        ${A}{I}= \left[ {\dfrac{ { {g_{ii} } } }{ {\max \to {g_{ii} } } }{P_i} } \right]\left({100} \right)$

    式中:gii为斑块类型i像素之间的相似连接的数量;max→gii为斑块类型i像素之间的相似连接的最大数量,Pi为斑块类型i组成的景观所占比例。gii is the number of like adjacencies between pixels of patch type,. max-gii is the maximum number of like adjacencies between pixels of patch type, Pi is the proportion of landscape comprised of patch type i.
    Shannon多样性指数 SHDI可以表示景观的异质性,在景观系统中,土地利用越丰富,破碎化程度越高,SHDI值越高。Indicates the heterogeneity of the landscape. In the landscape system, when the land use is more intensive, the degree of fragmentation is higher and the SHDI is larger.景观
    Landscape
    ${S}{H}{D}{I} = - \displaystyle\sum\limits_{i = 1}^m {\left[ { {P_i} \times \ln \left({ {P_i} } \right)} \right]}$
    Shannon均匀度指数 SHEI描述景观不同时期的多样性变化,该值越小优势度越高,说明景观受到一种或几种优势斑块类型支配。Indicate the diversity of the landscape in different periods. When the landscape is dominated by one or more dominant patch types, the SHEI is smaller and the degree of dominance is higher景观
    Landscape
    ${S}{H}{E}{I} = \dfrac{ { - \displaystyle\sum\limits_{i = 1}^m {\left[ { {P_i} \times \ln \left({ {P_i} } \right)} \right]} } }{ {\ln m} }$
    蔓延度指数CONTAG描述景观不同斑块的团聚程度或延展形式,该值越高表示某种优势斑块类型连接性越好。
    Indicates the degree of agglomeration or extension of different patches in the landscape. When the connectivity of a certain dominant patch type is better, the CONTAG is higher.
    景观
    Landscape
     ${C}{O}{N}{T}{A}{G} = \left[ {1 + \displaystyle\sum\limits_{i = 1}^m {\sum\limits_{j = 1}^n {\dfrac{ { {P_{ij} }\ln \left({ {P_{ij} } } \right)} }{ {2\ln \left(m \right)} } } } } \right]\left({100} \right)$

    式中: Pij是随机选择的两个相邻栅格细胞属于类型ij的概率。Pij is the probability that two adjacent grid cells randomly selected belong to types i and j.
    下载: 导出CSV

    表  2  辽宁省景观转移矩阵

    Table  2.   Transition matrix of landscape type of Liaoning province

    耕地
    Agricultural
    area/km2
    林地
    Forest area/km2
    草地
    Grassland area/km2
    湿地
    Wetland area/km2
    建筑用地
    Build-up area/km2
    未利用地
    Unused area/km2
    转入面积
    Transfer-in area/km2
    转出面积
    Transfer-out area/km2
    净变化量
    Net change/km2
    变化率
    Change rate/%
    耕地
    Agricultural area
    42 3395 6131 0482 2043 75819410 23312 817−2 584−0.47
    林地
    Forest area
    4 59650 0698763848317911 0496 7654 2840.75
    草地
    Grassland area
    1 4464 8482 536962381012 0946 730−4 636−5.00
    湿地
    Wetland area
    2 5813238710 7479784963 2844 465−1 182−0.55
    建筑用地
    Build-up area
    1 506240613076 471295 8572 1443 7134.63
    未利用地
    Unused area
    1042522292528838984934052.94
    下载: 导出CSV

    表  3  辽宁省2005和2015年的景观水平景观格局指数

    Table  3.   Landscape index at the landscape level of Liaoning province in 2005 and 2015

    年份 Year斑块数 NP斑块密度 PD聚集度指数 AIShannon多样性指数 SHDIShannon均匀度指数SHEI蔓延度指数CONTAG
    200570 9020.4896.277 51.355 90.682 239.051 6
    201583 8640.5796.143 11.333 20.727 234.346 5
    下载: 导出CSV

    表  4  辽宁省2005和2015年的类型水平景观格局指数

    Table  4.   Landscape index at the landscape level of Liaoning province in 2005 and 2015

    年份
    Year
    景观类型
    Landscape type
    斑块数
    NP
    斑块密度
    PD
    景观形状指数
    LSI
    散布与并列指标
    IJI
    平均斑块面积
    AREA_MN
    聚集度指数
    AI
    2005林地Forestland16 0420.109 5218.665 047.737 5354.367 397.260 8
    湿地Wetland4 5070.030 6142.289 870.679 0319.959 896.568 5
    草地Grassland8 1780.055 8170.988 356.923 8113.322 994.700 9
    2015林地Forestland15 0480.095 9216.209 445.946 2406.175 697.388 2
    湿地Wetland5 9630.040 7146.500 474.889 6272.861 796.364 1
    草地Grassland5 6450.038 4139.038 367.814 482.016 993.910 3
    下载: 导出CSV

    表  5  特征值和主成分贡献率

    Table  5.   Eigenvalues and principal component contribution rate

    成分
    Components
    特征值
    Eigenvalues
    贡献率
    Proportion of
    Variance/%
    累计贡献率
    Cumulative
    proportion/%
    18.51285.11985.119
    21.08910.89396.012
    30.2242.23598.247
    40.1211.20999.456
    50.0320.32399.779
    60.0170.17299.952
    70.0040.04199.993
    800.00499.997
    900.003100
    101.22E-050100
    下载: 导出CSV

    表  6  主成分载荷矩阵

    Table  6.   Loading matrix of principal component

    变量
    Variable
    第一主成分
    Component 1
    第一主成分
    Component 2
    X10.9160.134
    X2−0.9730.006
    X30.9990.003
    X40.9970.025
    X50.9880.101
    X60.98−0.105
    X70.9920.071
    X80.9860.018
    X90.0310.993
    X100.8960.311
    下载: 导出CSV
  • [1] 布仁仓, 胡远满, 常禹, 等, 2005. 景观指数之间的相关分析[J]. 生态学报, 25(10): 2764-2775. doi:  10.3321/j.issn:1000-0933.2005.10.044
    [2] 蔡为民, 唐华俊, 吕钢, 等, 2006. 景观格局分析法与土地利用转换矩阵在土地利用特征研究中的应用[J]. 中国土地科学, 20(1): 75-80.
    [3] 陈利顶, 李秀珍, 傅伯杰, 等, 2014. 中国景观生态学发展历程与未来研究重点[J]. 生态学报, 34(12): 3129-3141.
    [4] 冯志贤, 张继贤, 侯伟, 等, 2017. 基于地表覆盖分类的生态环境人为干扰度分析:以北京市为例[J]. 生态学杂志, 28(8): 2611-2620.
    [5] 盖美, 吴慧歌, 曲本亮, 2016. 新一轮东北振兴背景下的辽宁省水资源利用效率及其空间关联格局研究[J]. 资源科学, 38(7): 1336-1349.
    [6] 国家林业局, 2018. 2016退耕还林工程生态效益监测国家报告 [M]. 北京: 中国林业出版社.
    [7] 郭少壮, 白红英, 孟清, 等, 2020. 秦岭地区林地与草地景观格局变化及其驱动因素[J]. 生态学报, 40(1): 130-140.
    [8] 辽宁省统计局, 2006. 辽宁统计年鉴 [M]. 北京: 中国统计出版社.
    [9] 辽宁省统计局, 2016. 辽宁统计年鉴 [M]. 北京: 中国统计出版社.
    [10] 任嘉衍, 刘慧敏, 丁圣彦, 等, 2017. 伊河流域景观格局变化及其驱动机制[J]. 应用生态学报, 28(8): 2611-2620.
    [11] 孙凤云, 刘淼, 胡远满, 等, 2013. 基于多种方法的景观格局动态变化综合分析:以辽宁省铁岭市为例[J]. 生态学杂志, 32(8): 2163-2171.
    [12] 王兵, 鲁绍伟, 尤文忠, 等, 2010. 辽宁省森林生态系统服务价值评估[J]. 应用生态学报, 21(7): 1792-1798.
    [13] 王美玲, 张继超, 王舶鉴, 等, 2017. 长白山区森林景观格局动态[J]. 生态学杂志, 36(11): 3138-3147.
    [14] 徐新良, 刘纪元, 庄大方, 2012. 国家尺度土地利用/覆被变化遥感监测方法[J]. 安徽农业科学, 40(4): 2365-2369. doi:  10.3969/j.issn.0517-6611.2012.04.161
    [15] 杨振海, 2012. 基于Fragstats软件和TM影像的海南天然草地景观格局分析[J]. 安徽农业科学, 40(11): 6664,6675.
    [16] 邬建国, 2007. 景观生态学: 格局、过程、尺度与等级 [M]. 2版. 北京: 高等教育出版社.
    [17] 魏帆, 郭广轩, 张金萍, 等, 2018. 1985—2015年围填海活动影响下的环渤海湿地演变特征[J]. 生态学杂志, 37(5): 1527-1537.
    [18] 薛春燕, 2019. 基于森林资源调查数据的城市森林景观格局动态变化研究[J]. 陕西林业科技, 47(3): 36-42. doi:  10.3969/j.issn.1001-2117.2019.03.010
    [19] 阳文锐, 2015. 北京城市景观格局时空变化及驱动力[J]. 生态学报, 35(13): 4357-4366.
    [20] 张林艳, 夏既胜, 叶万辉, 2008. 景观格局分析指数选取刍论[J]. 云南地理环境研究, 20(5): 38-43. doi:  10.3969/j.issn.1001-7852.2008.05.008
    [21] 张莹莹, 蔡晓斌, 杨超, 等, 2019. 1974—2017 年洪湖湿地自然保护区景观格局演变及驱动力分析[J]. 湖泊科学, 31(1): 171-182. doi:  10.18307/2019.0116
    [22] 赵同谦, 欧阳志云, 贾良清, 等, 2004. 中国草地生态系统服务功能间接价值评价[J]. 生态学报, 24(6): 1101-1110. doi:  10.3321/j.issn:1000-0933.2004.06.002
    [23] 中华人民共和国中央人民政府, (2019-05-23)[2020-10-14]. 中共中央国务院关于建立国土空间规划体系并监督实施的若干意见[EB/OL]. http://www.gov.cn/zhengce/2019-05/23/content_5394187.htm.
    [24] 周华锋, 马克明, 傅伯杰, 1999. 人类活动对北京东灵山地区景观格局影响分析[J]. 自然资源学报, 14(2): 117-122. doi:  10.3321/j.issn:1000-3037.1999.02.004
    [25] Costanza R, d’Arge R, de Groot R, et al, 1997. The value of the world’s ecosystem services and natural capital[J]. Nature, 387(6330): 253-260.
    [26] Enayat A, Fateme Z, Patrick M R, et al, 2020. Structuring and evaluating decision support processes to enhance the robustness of complex human–natural systems[J]. Environmental Modelling and Software, 123: 104551. doi:  10.1016/j.envsoft.2019.104551
    [27] Liu J Y, Kuang W H, Zhang Z X, et al, 2014. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s[J]. Journal of Geographical Sciences, 24(2): 195-210. doi:  10.1007/s11442-014-1082-6
    [28] Mooney H A, Duraiappah A, Larigauderie A, 2013. Evolution of natural and social interactions in global change research programs[J]. PNAS, 110(Suppl 1): 3665-3672.
    [29] Ramalho C E, Laliberté E, Poot P, et al, 2016. Complex effects of fragmentation on remnant woodland plant communities of a rapidly urbanizing biodiversity hotspot[J]. Ecology, 95(9): 2466-2478.
    [30] Tian H, Xu H, Hall C A S, 1995. Pattern and change of a boreal forest landscape in northeastern China[J]. Water, Air, and Soil Pollution, 82(1/2): 465-476. doi:  10.1007/BF01182856
    [31] Tian H Q, Chen G, Zhang C, et al, 2012. Century-scale response of ecosystem carbon storage to multifactorial global change in the Southern United States[J]. Ecosystems, 15(4): 674-694. doi:  10.1007/s10021-012-9539-x
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  685
  • HTML全文浏览量:  399
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-24
  • 录用日期:  2021-08-16
  • 网络出版日期:  2021-10-19
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回

    关于网站迁移的通知

     尊敬的各位专家、读者:

    本刊网站将于6月28日起迁移至中国林业科学研究院期刊网(https://journals.caf.ac.cn/ldstxtybhxb/),届时旧网址http://www.ldstxtybhxb.com/将停止访问,如需投稿请直接登录http://edit.caf.ac.cn/ldstxtybhxb。由此给您带来不便,敬请谅解!

    如有任何问题,请及时联系编辑部,Tel:010-62889503;E-mail:ldstxtybh@caf.ac.cn。

     

    陆地生态系统与保护学报

    2024-06-25